file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_operand_heaplet
val va_upd_operand_heaplet (n: heaplet_id) (h: vale_heap) (s: state) : state
val va_upd_operand_heaplet (n: heaplet_id) (h: vale_heap) (s: state) : state
let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 222, "start_col": 12, "start_line": 221 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Vale.PPC64LE.Decls.heaplet_id -> h: Vale.PPC64LE.Decls.vale_heap -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Decls.va_upd_mem_heaplet" ]
[]
false
false
false
true
false
let va_upd_operand_heaplet (n: heaplet_id) (h: vale_heap) (s: state) : state =
va_upd_mem_heaplet n h s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_CCons
val va_CCons (hd: va_code) (tl: va_codes) : va_codes
val va_CCons (hd: va_code) (tl: va_codes) : va_codes
let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 235, "start_col": 19, "start_line": 235 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hd: Vale.PPC64LE.Decls.va_code -> tl: Vale.PPC64LE.Decls.va_codes -> Vale.PPC64LE.Decls.va_codes
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_code", "Vale.PPC64LE.Decls.va_codes", "Prims.Cons" ]
[]
false
false
false
true
false
let va_CCons (hd: va_code) (tl: va_codes) : va_codes =
hd :: tl
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_operand_reg_opr
val va_upd_operand_reg_opr (r: reg_opr) (v: nat64) (s: state) : state
val va_upd_operand_reg_opr (r: reg_opr) (v: nat64) (s: state) : state
let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 97, "end_line": 219, "start_col": 12, "start_line": 219 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Decls.reg_opr -> v: Vale.PPC64LE.Machine_s.nat64 -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.reg_opr", "Vale.PPC64LE.Machine_s.nat64", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Decls.va_upd_reg" ]
[]
false
false
false
true
false
let va_upd_operand_reg_opr (r: reg_opr) (v: nat64) (s: state) : state =
va_upd_reg r v s
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_wp_Gcm_blocks_auth
val va_wp_Gcm_blocks_auth (auth_b abytes_b hkeys_b: buffer128) (h_LE: quad32) (va_s0: va_state) (va_k: (va_state -> (seq quad32) -> Type0)) : Type0
val va_wp_Gcm_blocks_auth (auth_b abytes_b hkeys_b: buffer128) (h_LE: quad32) (va_s0: va_state) (va_k: (va_state -> (seq quad32) -> Type0)) : Type0
let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq))))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 390, "start_col": 0, "start_line": 356 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0)))))))))))))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
auth_b: Vale.X64.Memory.buffer128 -> abytes_b: Vale.X64.Memory.buffer128 -> hkeys_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "Vale.X64.Decls.va_state", "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.X64.Decls.validSrcAddrs128", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRdx", "Vale.X64.Decls.va_get_mem_layout", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Machine_s.rRbx", "Prims.op_Subtraction", "Vale.X64.Machine_s.rR9", "Prims.op_LessThan", "Prims.op_Addition", "Prims.op_Multiply", "Vale.X64.Machine_s.pow2_64", "Prims.eq2", "Prims.nat", "Vale.X64.Decls.buffer_length", "Vale.X64.Memory.vuint128", "Prims.int", "Prims.op_LessThanOrEqual", "Vale.X64.Decls.va_mul_nat", "Prims.op_Division", "Vale.X64.Machine_s.rRsi", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.AES.GHash.hkeys_reqs_priv", "Vale.X64.Decls.s128", "Vale.Def.Types_s.reverse_bytes_quad32", "Prims.l_Forall", "Vale.X64.Memory.nat64", "Vale.X64.Flags.t", "Prims.l_imp", "Vale.Def.Types_s.nat64", "Vale.X64.Machine_s.rR15", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_get_xmm", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Vale.AES.GHash.ghash_incremental0", "Vale.Def.Words_s.nat8", "Vale.AES.GCTR_s.pad_to_128_bits", "FStar.Seq.Base.slice", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Vale.X64.Decls.va_if", "Prims.op_GreaterThan", "Prims.unit", "FStar.Seq.Base.append", "Prims.l_not", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rR11" ]
[]
false
false
false
true
true
let va_wp_Gcm_blocks_auth (auth_b abytes_b hkeys_b: buffer128) (h_LE: quad32) (va_s0: va_state) (va_k: (va_state -> (seq quad32) -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` (va_get_reg64 rRdx va_s0) < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx: nat64) (va_x_r11: nat64) (va_x_r10: nat64) (va_x_rcx: nat64) (va_x_r15: nat64) (va_x_efl: Vale.X64.Flags.t) (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32) (va_x_xmm9: quad32) (auth_quad_seq: (seq quad32)). let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0) )))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let raw_auth_quads:(seq quad32) = va_if (va_get_reg64 rRsi va_s0 > ((va_get_reg64 rRdx va_s0) `op_Multiply` 128) `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let auth_input_bytes:(seq nat8) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let padded_auth_bytes:(seq nat8) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq))))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_CNil
val va_CNil: Prims.unit -> va_codes
val va_CNil: Prims.unit -> va_codes
let va_CNil () : va_codes = []
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 234, "start_col": 19, "start_line": 234 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = ()
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Vale.PPC64LE.Decls.va_codes
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "Prims.Nil", "Vale.PPC64LE.Decls.va_code", "Vale.PPC64LE.Decls.va_codes" ]
[]
false
false
false
true
false
let va_CNil () : va_codes =
[]
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_block
val va_get_block (c: va_code{Block? c}) : va_codes
val va_get_block (c: va_code{Block? c}) : va_codes
let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 73, "end_line": 249, "start_col": 7, "start_line": 249 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.va_code{Block? c} -> Vale.PPC64LE.Decls.va_codes
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_code", "Prims.b2t", "Vale.PPC64LE.Machine_s.uu___is_Block", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Machine_s.__proj__Block__item__block", "Vale.PPC64LE.Decls.va_codes" ]
[]
false
false
false
false
false
let va_get_block (c: va_code{Block? c}) : va_codes =
Block?.block c
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_While
val va_While (whileCond: ocmp) (whileBody: va_code) : va_code
val va_While (whileCond: ocmp) (whileBody: va_code) : va_code
let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 94, "end_line": 240, "start_col": 7, "start_line": 240 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
whileCond: Vale.PPC64LE.Decls.ocmp -> whileBody: Vale.PPC64LE.Decls.va_code -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Decls.va_code", "Vale.PPC64LE.Machine_s.While", "Vale.PPC64LE.Decls.ins" ]
[]
false
false
false
true
false
let va_While (whileCond: ocmp) (whileBody: va_code) : va_code =
While whileCond whileBody
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_operand_vec_opr
val va_upd_operand_vec_opr (x: vec) (v: quad32) (s: state) : state
val va_upd_operand_vec_opr (x: vec) (v: quad32) (s: state) : state
let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 94, "end_line": 220, "start_col": 12, "start_line": 220 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.PPC64LE.Machine_s.vec -> v: Vale.PPC64LE.Machine_s.quad32 -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.vec", "Vale.PPC64LE.Machine_s.quad32", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Decls.va_upd_vec" ]
[]
false
false
false
true
false
let va_upd_operand_vec_opr (x: vec) (v: quad32) (s: state) : state =
va_upd_vec x v s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_IfElse
val va_IfElse (ifCond: ocmp) (ifTrue ifFalse: va_code) : va_code
val va_IfElse (ifCond: ocmp) (ifTrue ifFalse: va_code) : va_code
let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 110, "end_line": 239, "start_col": 7, "start_line": 239 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ifCond: Vale.PPC64LE.Decls.ocmp -> ifTrue: Vale.PPC64LE.Decls.va_code -> ifFalse: Vale.PPC64LE.Decls.va_code -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Decls.va_code", "Vale.PPC64LE.Machine_s.IfElse", "Vale.PPC64LE.Decls.ins" ]
[]
false
false
false
true
false
let va_IfElse (ifCond: ocmp) (ifTrue ifFalse: va_code) : va_code =
IfElse ifCond ifTrue ifFalse
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_ifCond
val va_get_ifCond (c: va_code{IfElse? c}) : ocmp
val va_get_ifCond (c: va_code{IfElse? c}) : ocmp
let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 73, "end_line": 250, "start_col": 7, "start_line": 250 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.va_code{IfElse? c} -> Vale.PPC64LE.Decls.ocmp
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_code", "Prims.b2t", "Vale.PPC64LE.Machine_s.uu___is_IfElse", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Machine_s.__proj__IfElse__item__ifCond" ]
[]
false
false
false
false
false
let va_get_ifCond (c: va_code{IfElse? c}) : ocmp =
IfElse?.ifCond c
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_whileCond
val va_get_whileCond (c: va_code{While? c}) : ocmp
val va_get_whileCond (c: va_code{While? c}) : ocmp
let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 253, "start_col": 7, "start_line": 253 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.va_code{While? c} -> Vale.PPC64LE.Decls.ocmp
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_code", "Prims.b2t", "Vale.PPC64LE.Machine_s.uu___is_While", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Machine_s.__proj__While__item__whileCond" ]
[]
false
false
false
false
false
let va_get_whileCond (c: va_code{While? c}) : ocmp =
While?.whileCond c
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_Block
val va_Block (block: va_codes) : va_code
val va_Block (block: va_codes) : va_code
let va_Block (block:va_codes) : va_code = Block block
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 238, "start_col": 7, "start_line": 238 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
block: Vale.PPC64LE.Decls.va_codes -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_codes", "Vale.PPC64LE.Machine_s.Block", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Decls.va_code" ]
[]
false
false
false
true
false
let va_Block (block: va_codes) : va_code =
Block block
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_mem_heaplet
val va_get_mem_heaplet (n: heaplet_id) (s: va_state) : vale_heap
val va_get_mem_heaplet (n: heaplet_id) (s: va_state) : vale_heap
let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 126, "end_line": 150, "start_col": 19, "start_line": 150 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Vale.PPC64LE.Decls.heaplet_id -> s: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.vale_heap
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id", "Vale.PPC64LE.Decls.va_state", "Vale.Lib.Map16.sel", "Vale.Arch.HeapImpl.vale_heap", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heaplets", "Vale.PPC64LE.Decls.coerce", "Vale.Arch.HeapImpl.vale_full_heap", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Decls.vale_heap" ]
[]
false
false
false
true
false
let va_get_mem_heaplet (n: heaplet_id) (s: va_state) : vale_heap =
Map16.sel (coerce s.ms_heap).vf_heaplets n
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_ifFalse
val va_get_ifFalse (c: va_code{IfElse? c}) : va_code
val va_get_ifFalse (c: va_code{IfElse? c}) : va_code
let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 252, "start_col": 7, "start_line": 252 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.va_code{IfElse? c} -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_code", "Prims.b2t", "Vale.PPC64LE.Machine_s.uu___is_IfElse", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Machine_s.__proj__IfElse__item__ifFalse" ]
[]
false
false
false
false
false
let va_get_ifFalse (c: va_code{IfElse? c}) : va_code =
IfElse?.ifFalse c
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_whileBody
val va_get_whileBody (c: va_code{While? c}) : va_code
val va_get_whileBody (c: va_code{While? c}) : va_code
let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 254, "start_col": 7, "start_line": 254 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.va_code{While? c} -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_code", "Prims.b2t", "Vale.PPC64LE.Machine_s.uu___is_While", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Machine_s.__proj__While__item__whileBody" ]
[]
false
false
false
false
false
let va_get_whileBody (c: va_code{While? c}) : va_code =
While?.whileBody c
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_ifTrue
val va_get_ifTrue (c: va_code{IfElse? c}) : va_code
val va_get_ifTrue (c: va_code{IfElse? c}) : va_code
let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 76, "end_line": 251, "start_col": 7, "start_line": 251 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.va_code{IfElse? c} -> Vale.PPC64LE.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_code", "Prims.b2t", "Vale.PPC64LE.Machine_s.uu___is_IfElse", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Machine_s.__proj__IfElse__item__ifTrue" ]
[]
false
false
false
false
false
let va_get_ifTrue (c: va_code{IfElse? c}) : va_code =
IfElse?.ifTrue c
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.modifies_buffer128_2
val modifies_buffer128_2 : b1: Vale.PPC64LE.Memory.buffer128 -> b2: Vale.PPC64LE.Memory.buffer128 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 66, "end_line": 292, "start_col": 7, "start_line": 291 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: Vale.PPC64LE.Memory.buffer128 -> b2: Vale.PPC64LE.Memory.buffer128 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Decls.modifies_mem", "Vale.PPC64LE.Memory.loc_union", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint128", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let modifies_buffer128_2 (b1 b2: M.buffer128) (h1 h2: vale_heap) =
modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.validDstAddrs64
val validDstAddrs64 : h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer64 -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 312, "start_col": 0, "start_line": 311 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer64 -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Prims.int", "Vale.PPC64LE.Memory.buffer64", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Decls.validDstAddrs", "Vale.PPC64LE.Memory.vuint64", "Prims.logical" ]
[]
false
false
false
true
true
let validDstAddrs64 (h: vale_heap) (addr: int) (b: M.buffer64) (len: int) (layout: vale_heap_layout) (tn: taint) =
validDstAddrs h addr b len layout tn
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.modifies_buffer_2
val modifies_buffer_2 : b1: Vale.PPC64LE.Memory.buffer64 -> b2: Vale.PPC64LE.Memory.buffer64 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 66, "end_line": 287, "start_col": 7, "start_line": 286 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l'
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: Vale.PPC64LE.Memory.buffer64 -> b2: Vale.PPC64LE.Memory.buffer64 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer64", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Decls.modifies_mem", "Vale.PPC64LE.Memory.loc_union", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint64", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let modifies_buffer_2 (b1 b2: M.buffer64) (h1 h2: vale_heap) =
modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.validSrcAddrs128
val validSrcAddrs128 : h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer128 -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 315, "start_col": 0, "start_line": 314 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer128 -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Prims.int", "Vale.PPC64LE.Memory.buffer128", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Decls.validSrcAddrs", "Vale.PPC64LE.Memory.vuint128", "Prims.logical" ]
[]
false
false
false
true
true
let validSrcAddrs128 (h: vale_heap) (addr: int) (b: M.buffer128) (len: int) (layout: vale_heap_layout) (tn: taint) =
validSrcAddrs h addr b len layout tn
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.modifies_buffer_3
val modifies_buffer_3 : b1: Vale.PPC64LE.Memory.buffer64 -> b2: Vale.PPC64LE.Memory.buffer64 -> b3: Vale.PPC64LE.Memory.buffer64 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 289, "start_col": 7, "start_line": 288 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) =
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: Vale.PPC64LE.Memory.buffer64 -> b2: Vale.PPC64LE.Memory.buffer64 -> b3: Vale.PPC64LE.Memory.buffer64 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer64", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Decls.modifies_mem", "Vale.PPC64LE.Memory.loc_union", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint64", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let modifies_buffer_3 (b1 b2 b3: M.buffer64) (h1 h2: vale_heap) =
modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.validSrcAddrs
val validSrcAddrs : h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer t -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 301, "start_col": 0, "start_line": 296 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer t -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.PPC64LE.Decls.vale_heap", "Prims.int", "Vale.PPC64LE.Memory.buffer", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.Arch.HeapTypes_s.taint", "Prims.l_and", "Vale.PPC64LE.Decls.buffer_readable", "Prims.b2t", "Prims.op_LessThanOrEqual", "Vale.PPC64LE.Decls.buffer_length", "Prims.eq2", "Vale.PPC64LE.Memory.buffer_addr", "Vale.PPC64LE.Memory.valid_layout_buffer_id", "Vale.PPC64LE.Memory.get_heaplet_id", "Vale.PPC64LE.Memory.valid_taint_buf", "Vale.Arch.HeapImpl.__proj__Mkvale_heap_layout__item__vl_taint", "Prims.logical" ]
[]
false
false
false
false
true
let validSrcAddrs (#t: base_typ) (h: vale_heap) (addr: int) (b: M.buffer t) (len: int) (layout: vale_heap_layout) (tn: taint) =
buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.modifies_buffer128_3
val modifies_buffer128_3 : b1: Vale.PPC64LE.Memory.buffer128 -> b2: Vale.PPC64LE.Memory.buffer128 -> b3: Vale.PPC64LE.Memory.buffer128 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 294, "start_col": 7, "start_line": 293 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) =
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: Vale.PPC64LE.Memory.buffer128 -> b2: Vale.PPC64LE.Memory.buffer128 -> b3: Vale.PPC64LE.Memory.buffer128 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Decls.modifies_mem", "Vale.PPC64LE.Memory.loc_union", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint128", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let modifies_buffer128_3 (b1 b2 b3: M.buffer128) (h1 h2: vale_heap) =
modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.validSrcAddrs64
val validSrcAddrs64 : h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer64 -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 309, "start_col": 0, "start_line": 308 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer64 -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Prims.int", "Vale.PPC64LE.Memory.buffer64", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Decls.validSrcAddrs", "Vale.PPC64LE.Memory.vuint64", "Prims.logical" ]
[]
false
false
false
true
true
let validSrcAddrs64 (h: vale_heap) (addr: int) (b: M.buffer64) (len: int) (layout: vale_heap_layout) (tn: taint) =
validSrcAddrs h addr b len layout tn
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.modifies_buffer128
val modifies_buffer128 : b: Vale.PPC64LE.Memory.buffer128 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 99, "end_line": 290, "start_col": 7, "start_line": 290 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) =
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer128 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Decls.modifies_mem", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint128", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let modifies_buffer128 (b: M.buffer128) (h1 h2: vale_heap) =
modifies_mem (loc_buffer b) h1 h2
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_mem
val va_upd_mem (mem: vale_heap) (s: state) : state
val va_upd_mem (mem: vale_heap) (s: state) : state
let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) }
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 131, "end_line": 177, "start_col": 12, "start_line": 177 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mem: Vale.PPC64LE.Decls.vale_heap -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Machine_s.Mkstate", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ok", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__regs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__vecs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__cr0", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__xer", "Vale.PPC64LE.Decls.coerce", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Memory.vale_full_heap", "Vale.PPC64LE.Memory.set_vale_heap", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stack", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint" ]
[]
false
false
false
true
false
let va_upd_mem (mem: vale_heap) (s: state) : state =
{ s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) }
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.validDstAddrs128
val validDstAddrs128 : h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer128 -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 318, "start_col": 0, "start_line": 317 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer128 -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Prims.int", "Vale.PPC64LE.Memory.buffer128", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Decls.validDstAddrs", "Vale.PPC64LE.Memory.vuint128", "Prims.logical" ]
[]
false
false
false
true
true
let validDstAddrs128 (h: vale_heap) (addr: int) (b: M.buffer128) (len: int) (layout: vale_heap_layout) (tn: taint) =
validDstAddrs h addr b len layout tn
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_quick_Gcm_blocks_stdcall
val va_quick_Gcm_blocks_stdcall (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (plain_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) : (va_quickCode unit (va_code_Gcm_blocks_stdcall win alg))
val va_quick_Gcm_blocks_stdcall (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (plain_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) : (va_quickCode unit (va_code_Gcm_blocks_stdcall win alg))
let va_quick_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_Gcm_blocks_stdcall win alg)) = (va_QProc (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key) (va_wpProof_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 84, "end_line": 1533, "start_col": 0, "start_line": 1515 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win)) //-- //-- Restore_registers val va_code_Restore_registers : win:bool -> Tot va_code val va_codegen_success_Restore_registers : win:bool -> Tot va_pbool val va_lemma_Restore_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Restore_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_reg64 rRsp va_sM (va_update_stack va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))))))))))))))))))))) [@ va_qattr] let va_wp_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rbp:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_stack:vale_stack) (va_x_rsp:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0)))))))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (()))) val va_wpProof_Restore_registers : win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15 va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) : (va_quickCode unit (va_code_Restore_registers win)) = (va_QProc (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) (va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15) (va_wpProof_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15)) //-- #reset-options "--z3rlimit 100" //-- Gcm_blocks_stdcall val va_code_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_code val va_codegen_success_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_pbool let va_req_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : prop = (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv))) let va_ens_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Gcm_blocks_stdcall va_b0 va_s0 win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))))))))))))))))))))))) val va_lemma_Gcm_blocks_stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_rsp:nat64) (va_x_rbp:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_memLayout:vale_heap_layout) (va_x_heap1:vale_heap) (va_x_heap2:vale_heap) (va_x_heap3:vale_heap) (va_x_heap4:vale_heap) (va_x_heap5:vale_heap) (va_x_heap6:vale_heap) (va_x_efl:Vale.X64.Flags.t) (va_x_stack:vale_stack) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_heaplet 6 va_x_heap6 (va_upd_mem_heaplet 5 va_x_heap5 (va_upd_mem_heaplet 4 va_x_heap4 (va_upd_mem_heaplet 3 va_x_heap3 (va_upd_mem_heaplet 2 va_x_heap2 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem_layout va_x_memLayout (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))))))))))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) ==> va_k va_sM (()))) val va_wpProof_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> alg: Vale.AES.AES_common_s.algorithm -> auth_b: Vale.X64.Memory.buffer128 -> auth_bytes: Vale.X64.Memory.nat64 -> auth_num: Vale.X64.Memory.nat64 -> keys_b: Vale.X64.Memory.buffer128 -> iv_b: Vale.X64.Memory.buffer128 -> iv: Vale.AES.GCM_s.supported_iv_LE -> hkeys_b: Vale.X64.Memory.buffer128 -> abytes_b: Vale.X64.Memory.buffer128 -> in128x6_b: Vale.X64.Memory.buffer128 -> out128x6_b: Vale.X64.Memory.buffer128 -> len128x6_num: Vale.X64.Memory.nat64 -> in128_b: Vale.X64.Memory.buffer128 -> out128_b: Vale.X64.Memory.buffer128 -> len128_num: Vale.X64.Memory.nat64 -> inout_b: Vale.X64.Memory.buffer128 -> plain_num: Vale.X64.Memory.nat64 -> scratch_b: Vale.X64.Memory.buffer128 -> tag_b: Vale.X64.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.GCMencryptOpt.va_code_Gcm_blocks_stdcall win alg)
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.AES.AES_common_s.algorithm", "Vale.X64.Memory.buffer128", "Vale.X64.Memory.nat64", "Vale.AES.GCM_s.supported_iv_LE", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.GCMencryptOpt.va_code_Gcm_blocks_stdcall", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_stackTaint", "Vale.X64.QuickCode.va_Mod_stack", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_mem_heaplet", "Vale.X64.QuickCode.va_Mod_mem_layout", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR15", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rR9", "Vale.X64.Machine_s.rR8", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rRsp", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRax", "Vale.X64.QuickCode.va_Mod_mem", "Prims.Nil", "Vale.AES.X64.GCMencryptOpt.va_wp_Gcm_blocks_stdcall", "Vale.AES.X64.GCMencryptOpt.va_wpProof_Gcm_blocks_stdcall", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Gcm_blocks_stdcall (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (plain_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) : (va_quickCode unit (va_code_Gcm_blocks_stdcall win alg)) =
(va_QProc (va_code_Gcm_blocks_stdcall win alg) ([ va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem ]) (va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key) (va_wpProof_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer_modifies_specific128
val buffer_modifies_specific128 (b: M.buffer128) (h1 h2: vale_heap) (start last: nat) : GTot prop0
val buffer_modifies_specific128 (b: M.buffer128) (h1 h2: vale_heap) (start last: nat) : GTot prop0
let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2)
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 341, "start_col": 0, "start_line": 335 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer128 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> start: Prims.nat -> last: Prims.nat -> Prims.GTot Vale.Def.Prop_s.prop0
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.vale_heap", "Prims.nat", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Vale.PPC64LE.Decls.buffer_length", "Vale.PPC64LE.Memory.vuint128", "Prims.op_BarBar", "Prims.op_GreaterThan", "Prims.eq2", "Vale.PPC64LE.Machine_s.quad32", "Vale.PPC64LE.Decls.buffer128_read", "FStar.Seq.Base.index", "Vale.PPC64LE.Memory.base_typ_as_vale_type", "Vale.PPC64LE.Memory.buffer_as_seq", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let buffer_modifies_specific128 (b: M.buffer128) (h1 h2: vale_heap) (start last: nat) : GTot prop0 =
(forall (i: nat). {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2)
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_mem_layout
val va_update_mem_layout (sM sK: va_state) : va_state
val va_update_mem_layout (sM sK: va_state) : va_state
let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 135, "end_line": 191, "start_col": 19, "start_line": 191 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_mem_layout", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_layout", "Vale.PPC64LE.Decls.coerce", "Vale.Arch.HeapImpl.vale_full_heap", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap" ]
[]
false
false
false
true
false
let va_update_mem_layout (sM sK: va_state) : va_state =
va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.validDstAddrs
val validDstAddrs : h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer t -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 306, "start_col": 0, "start_line": 303 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer t -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.PPC64LE.Decls.vale_heap", "Prims.int", "Vale.PPC64LE.Memory.buffer", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.Arch.HeapTypes_s.taint", "Prims.l_and", "Vale.PPC64LE.Decls.validSrcAddrs", "Vale.PPC64LE.Memory.valid_layout_buffer_id", "Vale.PPC64LE.Memory.get_heaplet_id", "Vale.PPC64LE.Decls.buffer_writeable", "Prims.logical" ]
[]
false
false
false
false
true
let validDstAddrs (#t: base_typ) (h: vale_heap) (addr: int) (b: M.buffer t) (len: int) (layout: vale_heap_layout) (tn: taint) =
validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.validDstAddrsOffset128
val validDstAddrsOffset128 : h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer128 -> offset: Prims.int -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 324, "start_col": 0, "start_line": 323 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer128 -> offset: Prims.int -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Prims.int", "Vale.PPC64LE.Memory.buffer128", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Decls.validDstAddrs", "Vale.PPC64LE.Memory.vuint128", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.logical" ]
[]
false
false
false
true
true
let validDstAddrsOffset128 (h: vale_heap) (addr: int) (b: M.buffer128) (offset len: int) (layout: vale_heap_layout) (tn: taint) =
validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.modifies_buffer_specific128
val modifies_buffer_specific128 (b: M.buffer128) (h1 h2: vale_heap) (start last: nat) : GTot prop0
val modifies_buffer_specific128 (b: M.buffer128) (h1 h2: vale_heap) (start last: nat) : GTot prop0
let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2)
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 333, "start_col": 0, "start_line": 326 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer128 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> start: Prims.nat -> last: Prims.nat -> Prims.GTot Vale.Def.Prop_s.prop0
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.vale_heap", "Prims.nat", "Prims.l_and", "Vale.PPC64LE.Decls.modifies_buffer128", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Vale.PPC64LE.Decls.buffer_length", "Vale.PPC64LE.Memory.vuint128", "Prims.op_BarBar", "Prims.op_GreaterThan", "Prims.eq2", "Vale.PPC64LE.Machine_s.quad32", "Vale.PPC64LE.Decls.buffer128_read", "FStar.Seq.Base.index", "Vale.PPC64LE.Memory.base_typ_as_vale_type", "Vale.PPC64LE.Memory.buffer_as_seq", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let modifies_buffer_specific128 (b: M.buffer128) (h1 h2: vale_heap) (start last: nat) : GTot prop0 =
modifies_buffer128 b h1 h2 /\ (forall (i: nat). {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2)
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_mem_layout
val va_upd_mem_layout (layout: vale_heap_layout) (s: state) : state
val va_upd_mem_layout (layout: vale_heap_layout) (s: state) : state
let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) }
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 156, "end_line": 178, "start_col": 12, "start_line": 178 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
layout: Vale.Arch.HeapImpl.vale_heap_layout -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Machine_s.Mkstate", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ok", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__regs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__vecs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__cr0", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__xer", "Vale.PPC64LE.Decls.coerce", "Vale.Arch.Heap.heap_impl", "Vale.Arch.HeapImpl.vale_full_heap", "Vale.Arch.HeapImpl.Mkvale_full_heap", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heap", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heaplets", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stack", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint" ]
[]
false
false
false
true
false
let va_upd_mem_layout (layout: vale_heap_layout) (s: state) : state =
{ s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) }
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_req_Compute_iv_stdcall
val va_req_Compute_iv_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) : prop
val va_req_Compute_iv_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) : prop
let va_req_Compute_iv_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) : prop = (va_require_total va_b0 (va_code_Compute_iv_stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let (iv_bytes_LE:supported_iv_LE) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes iv_raw_quads) 0 num_bytes in iv_bytes_LE == iv)))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 1579, "start_col": 0, "start_line": 1540 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win)) //-- //-- Restore_registers val va_code_Restore_registers : win:bool -> Tot va_code val va_codegen_success_Restore_registers : win:bool -> Tot va_pbool val va_lemma_Restore_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Restore_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_reg64 rRsp va_sM (va_update_stack va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))))))))))))))))))))) [@ va_qattr] let va_wp_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rbp:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_stack:vale_stack) (va_x_rsp:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0)))))))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (()))) val va_wpProof_Restore_registers : win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15 va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) : (va_quickCode unit (va_code_Restore_registers win)) = (va_QProc (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) (va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15) (va_wpProof_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15)) //-- #reset-options "--z3rlimit 100" //-- Gcm_blocks_stdcall val va_code_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_code val va_codegen_success_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_pbool let va_req_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : prop = (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv))) let va_ens_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Gcm_blocks_stdcall va_b0 va_s0 win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))))))))))))))))))))))) val va_lemma_Gcm_blocks_stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_rsp:nat64) (va_x_rbp:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_memLayout:vale_heap_layout) (va_x_heap1:vale_heap) (va_x_heap2:vale_heap) (va_x_heap3:vale_heap) (va_x_heap4:vale_heap) (va_x_heap5:vale_heap) (va_x_heap6:vale_heap) (va_x_efl:Vale.X64.Flags.t) (va_x_stack:vale_stack) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_heaplet 6 va_x_heap6 (va_upd_mem_heaplet 5 va_x_heap5 (va_upd_mem_heaplet 4 va_x_heap4 (va_upd_mem_heaplet 3 va_x_heap3 (va_upd_mem_heaplet 2 va_x_heap2 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem_layout va_x_memLayout (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))))))))))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) ==> va_k va_sM (()))) val va_wpProof_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_Gcm_blocks_stdcall win alg)) = (va_QProc (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key) (va_wpProof_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key)) //-- //-- Compute_iv_stdcall val va_code_Compute_iv_stdcall : win:bool -> Tot va_code
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
va_b0: Vale.X64.Decls.va_code -> va_s0: Vale.X64.Decls.va_state -> win: Prims.bool -> iv: Vale.AES.GCM_s.supported_iv_LE -> iv_b: Vale.X64.Memory.buffer128 -> num_bytes: Vale.X64.Memory.nat64 -> len: Vale.X64.Memory.nat64 -> j0_b: Vale.X64.Memory.buffer128 -> iv_extra_b: Vale.X64.Memory.buffer128 -> hkeys_b: Vale.X64.Memory.buffer128 -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Decls.va_code", "Vale.X64.Decls.va_state", "Prims.bool", "Vale.AES.GCM_s.supported_iv_LE", "Vale.X64.Memory.buffer128", "Vale.X64.Memory.nat64", "Prims.l_and", "Vale.X64.Decls.va_require_total", "Vale.AES.X64.GCMencryptOpt.va_code_Compute_iv_stdcall", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Prims.eq2", "Vale.Def.Words_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRsp", "Vale.X64.Stack_i.init_rsp", "Vale.X64.Decls.va_get_stack", "Vale.X64.Memory.is_initial_heap", "Vale.X64.Decls.va_get_mem_layout", "Vale.X64.Decls.va_get_mem", "Prims.l_imp", "Vale.X64.Stack_i.valid_stack_slot64", "Prims.op_Addition", "Vale.Arch.HeapTypes_s.Public", "Vale.X64.Decls.va_get_stackTaint", "Prims.int", "Prims.l_or", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Vale.Def.Words_s.pow2_64", "Vale.X64.Decls.validSrcAddrs128", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.validDstAddrs128", "Vale.X64.Decls.buffers_disjoint128", "Prims.nat", "Vale.X64.Decls.buffer_length", "Vale.X64.Memory.vuint128", "Prims.op_Multiply", "Vale.X64.Machine_s.pow2_64", "Vale.X64.Decls.va_mul_nat", "Prims.op_Division", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.AES.OptPublic.hkeys_reqs_pub", "Vale.X64.Decls.s128", "Vale.Def.Types_s.reverse_bytes_quad32", "FStar.Seq.Base.slice", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.append", "Vale.X64.Decls.quad32", "Vale.X64.Decls.buffer128_read", "Vale.X64.Decls.va_int_range", "Vale.X64.Stack_i.load_stack64", "Vale.X64.Machine_s.rR9", "Vale.X64.Machine_s.rR8", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRdi", "Prims.prop" ]
[]
false
false
false
true
true
let va_req_Compute_iv_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) : prop =
(va_require_total va_b0 (va_code_Compute_iv_stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let iv_ptr:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let bytes_reg:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let len_reg:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let j0_ptr:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let extra_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let h_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let h_LE:Vale.Def.Types_s.quad32 = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let iv_bytes_LE:supported_iv_LE = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes iv_raw_quads) 0 num_bytes in iv_bytes_LE == iv)))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_mem
val va_update_mem (sM sK: va_state) : va_state
val va_update_mem (sM sK: va_state) : va_state
let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 119, "end_line": 190, "start_col": 19, "start_line": 190 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state =
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_mem", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heap", "Vale.PPC64LE.Decls.coerce", "Vale.Arch.HeapImpl.vale_full_heap", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap" ]
[]
false
false
false
true
false
let va_update_mem (sM sK: va_state) : va_state =
va_upd_mem (coerce sM.ms_heap).vf_heap sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffers_disjoint
val buffers_disjoint : b1: Vale.PPC64LE.Memory.buffer64 -> b2: Vale.PPC64LE.Memory.buffer64 -> Vale.Def.Prop_s.prop0
let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2]
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 353, "start_col": 7, "start_line": 352 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: Vale.PPC64LE.Memory.buffer64 -> b2: Vale.PPC64LE.Memory.buffer64 -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer64", "Vale.PPC64LE.Decls.locs_disjoint", "Prims.Cons", "Vale.PPC64LE.Memory.loc", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint64", "Prims.Nil", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let buffers_disjoint (b1 b2: M.buffer64) =
locs_disjoint [loc_buffer b1; loc_buffer b2]
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.modifies_buffer
val modifies_buffer : b: Vale.PPC64LE.Memory.buffer64 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 95, "end_line": 285, "start_col": 7, "start_line": 285 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l'
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer64 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer64", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Decls.modifies_mem", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint64", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let modifies_buffer (b: M.buffer64) (h1 h2: vale_heap) =
modifies_mem (loc_buffer b) h1 h2
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_mem_heaplet
val va_upd_mem_heaplet (n: heaplet_id) (h: vale_heap) (s: state) : state
val va_upd_mem_heaplet (n: heaplet_id) (h: vale_heap) (s: state) : state
let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) }
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 118, "end_line": 180, "start_col": 12, "start_line": 179 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) }
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Vale.PPC64LE.Decls.heaplet_id -> h: Vale.PPC64LE.Decls.vale_heap -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Machine_s.Mkstate", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ok", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__regs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__vecs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__cr0", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__xer", "Vale.PPC64LE.Decls.coerce", "Vale.Arch.Heap.heap_impl", "Vale.Arch.HeapImpl.vale_full_heap", "Vale.Arch.HeapImpl.Mkvale_full_heap", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_layout", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heap", "Vale.Lib.Map16.upd", "Vale.Arch.HeapImpl.vale_heap", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heaplets", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stack", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint" ]
[]
false
false
false
true
false
let va_upd_mem_heaplet (n: heaplet_id) (h: vale_heap) (s: state) : state =
{ s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) }
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.modifies_buffer_specific
val modifies_buffer_specific (b: M.buffer64) (h1 h2: vale_heap) (start last: nat) : GTot prop0
val modifies_buffer_specific (b: M.buffer64) (h1 h2: vale_heap) (start last: nat) : GTot prop0
let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2)
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 350, "start_col": 0, "start_line": 343 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer64 -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> start: Prims.nat -> last: Prims.nat -> Prims.GTot Vale.Def.Prop_s.prop0
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Memory.buffer64", "Vale.PPC64LE.Decls.vale_heap", "Prims.nat", "Prims.l_and", "Vale.PPC64LE.Decls.modifies_buffer", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Vale.PPC64LE.Decls.buffer_length", "Vale.PPC64LE.Memory.vuint64", "Prims.op_BarBar", "Prims.op_GreaterThan", "Prims.eq2", "Vale.PPC64LE.Machine_s.nat64", "Vale.PPC64LE.Decls.buffer64_read", "FStar.Seq.Base.index", "Vale.PPC64LE.Memory.base_typ_as_vale_type", "Vale.PPC64LE.Memory.buffer_as_seq", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let modifies_buffer_specific (b: M.buffer64) (h1 h2: vale_heap) (start last: nat) : GTot prop0 =
modifies_buffer b h1 h2 /\ (forall (i: nat). {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2)
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffers_disjoint128
val buffers_disjoint128 : b1: Vale.PPC64LE.Memory.buffer128 -> b2: Vale.PPC64LE.Memory.buffer128 -> Vale.Def.Prop_s.prop0
let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2]
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 356, "start_col": 7, "start_line": 355 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2]
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: Vale.PPC64LE.Memory.buffer128 -> b2: Vale.PPC64LE.Memory.buffer128 -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.locs_disjoint", "Prims.Cons", "Vale.PPC64LE.Memory.loc", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint128", "Prims.Nil", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let buffers_disjoint128 (b1 b2: M.buffer128) =
locs_disjoint [loc_buffer b1; loc_buffer b2]
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_ens_Compute_iv_stdcall
val va_ens_Compute_iv_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) (va_sM: va_state) (va_fM: va_fuel) : prop
val va_ens_Compute_iv_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) (va_sM: va_state) (va_fM: va_fuel) : prop
let va_ens_Compute_iv_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Compute_iv_stdcall va_b0 va_s0 win iv iv_b num_bytes len j0_b iv_extra_b hkeys_b /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in Vale.X64.Decls.buffer128_read j0_b 0 (va_get_mem va_sM) == Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ Vale.X64.Decls.modifies_buffer128 j0_b (va_get_mem va_s0) (va_get_mem va_sM) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0)) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 7 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))))))))))))))))))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 1626, "start_col": 0, "start_line": 1580 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win)) //-- //-- Restore_registers val va_code_Restore_registers : win:bool -> Tot va_code val va_codegen_success_Restore_registers : win:bool -> Tot va_pbool val va_lemma_Restore_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Restore_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_reg64 rRsp va_sM (va_update_stack va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))))))))))))))))))))) [@ va_qattr] let va_wp_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rbp:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_stack:vale_stack) (va_x_rsp:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0)))))))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (()))) val va_wpProof_Restore_registers : win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15 va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) : (va_quickCode unit (va_code_Restore_registers win)) = (va_QProc (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) (va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15) (va_wpProof_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15)) //-- #reset-options "--z3rlimit 100" //-- Gcm_blocks_stdcall val va_code_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_code val va_codegen_success_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_pbool let va_req_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : prop = (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv))) let va_ens_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Gcm_blocks_stdcall va_b0 va_s0 win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))))))))))))))))))))))) val va_lemma_Gcm_blocks_stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_rsp:nat64) (va_x_rbp:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_memLayout:vale_heap_layout) (va_x_heap1:vale_heap) (va_x_heap2:vale_heap) (va_x_heap3:vale_heap) (va_x_heap4:vale_heap) (va_x_heap5:vale_heap) (va_x_heap6:vale_heap) (va_x_efl:Vale.X64.Flags.t) (va_x_stack:vale_stack) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_heaplet 6 va_x_heap6 (va_upd_mem_heaplet 5 va_x_heap5 (va_upd_mem_heaplet 4 va_x_heap4 (va_upd_mem_heaplet 3 va_x_heap3 (va_upd_mem_heaplet 2 va_x_heap2 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem_layout va_x_memLayout (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))))))))))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) ==> va_k va_sM (()))) val va_wpProof_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_Gcm_blocks_stdcall win alg)) = (va_QProc (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key) (va_wpProof_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key)) //-- //-- Compute_iv_stdcall val va_code_Compute_iv_stdcall : win:bool -> Tot va_code val va_codegen_success_Compute_iv_stdcall : win:bool -> Tot va_pbool let va_req_Compute_iv_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) : prop = (va_require_total va_b0 (va_code_Compute_iv_stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let (iv_bytes_LE:supported_iv_LE) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
va_b0: Vale.X64.Decls.va_code -> va_s0: Vale.X64.Decls.va_state -> win: Prims.bool -> iv: Vale.AES.GCM_s.supported_iv_LE -> iv_b: Vale.X64.Memory.buffer128 -> num_bytes: Vale.X64.Memory.nat64 -> len: Vale.X64.Memory.nat64 -> j0_b: Vale.X64.Memory.buffer128 -> iv_extra_b: Vale.X64.Memory.buffer128 -> hkeys_b: Vale.X64.Memory.buffer128 -> va_sM: Vale.X64.Decls.va_state -> va_fM: Vale.X64.Decls.va_fuel -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Decls.va_code", "Vale.X64.Decls.va_state", "Prims.bool", "Vale.AES.GCM_s.supported_iv_LE", "Vale.X64.Memory.buffer128", "Vale.X64.Memory.nat64", "Vale.X64.Decls.va_fuel", "Prims.l_and", "Vale.AES.X64.GCMencryptOpt.va_req_Compute_iv_stdcall", "Vale.X64.Decls.va_ensure_total", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Prims.eq2", "Vale.Def.Types_s.quad32", "Vale.X64.Decls.buffer128_read", "Vale.X64.Decls.va_get_mem", "Vale.AES.GCM_s.compute_iv_BE", "Vale.X64.Decls.modifies_buffer128", "Vale.Def.Types_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRsp", "Prims.l_imp", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR15", "Vale.X64.Decls.quad32", "Vale.X64.Decls.va_get_xmm", "Prims.l_not", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.X64.Decls.va_int_range", "Vale.X64.Stack_i.load_stack64", "Prims.op_Addition", "Vale.X64.Decls.va_get_stack", "Vale.X64.Machine_s.rR9", "Vale.X64.Machine_s.rR8", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Vale.X64.Decls.va_state_eq", "Vale.X64.Decls.va_update_stackTaint", "Vale.X64.Decls.va_update_stack", "Vale.X64.Decls.va_update_flags", "Vale.X64.Decls.va_update_mem_heaplet", "Vale.X64.Decls.va_update_mem_layout", "Vale.X64.Decls.va_update_xmm", "Vale.X64.Decls.va_update_reg64", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rRax", "Vale.X64.Decls.va_update_ok", "Vale.X64.Decls.va_update_mem", "Prims.prop" ]
[]
false
false
false
true
true
let va_ens_Compute_iv_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) (va_sM: va_state) (va_fM: va_fuel) : prop =
(va_req_Compute_iv_stdcall va_b0 va_s0 win iv iv_b num_bytes len j0_b iv_extra_b hkeys_b /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let iv_ptr:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let bytes_reg:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let len_reg:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let j0_ptr:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let extra_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let h_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let h_LE:Vale.Def.Types_s.quad32 = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in Vale.X64.Decls.buffer128_read j0_b 0 (va_get_mem va_sM) == Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ Vale.X64.Decls.modifies_buffer128 j0_b (va_get_mem va_s0) (va_get_mem va_sM) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0)) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 7 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM ( va_update_reg64 rR12 va_sM ( va_update_reg64 rR11 va_sM ( va_update_reg64 rR10 va_sM ( va_update_reg64 rR9 va_sM ( va_update_reg64 rR8 va_sM ( va_update_reg64 rRbp va_sM ( va_update_reg64 rRsp va_sM ( va_update_reg64 rRsi va_sM ( va_update_reg64 rRdi va_sM ( va_update_reg64 rRdx va_sM ( va_update_reg64 rRcx va_sM ( va_update_reg64 rRbx va_sM ( va_update_reg64 rRax va_sM ( va_update_ok va_sM ( va_update_mem va_sM va_s0 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )) )))))))))))) )))))))))))
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_quick_Compute_iv_stdcall
val va_quick_Compute_iv_stdcall (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) : (va_quickCode unit (va_code_Compute_iv_stdcall win))
val va_quick_Compute_iv_stdcall (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) : (va_quickCode unit (va_code_Compute_iv_stdcall win))
let va_quick_Compute_iv_stdcall (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) : (va_quickCode unit (va_code_Compute_iv_stdcall win)) = (va_QProc (va_code_Compute_iv_stdcall win) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 7; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_Compute_iv_stdcall win iv iv_b num_bytes len j0_b iv_extra_b hkeys_b) (va_wpProof_Compute_iv_stdcall win iv iv_b num_bytes len j0_b iv_extra_b hkeys_b))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 1833, "start_col": 0, "start_line": 1821 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win)) //-- //-- Restore_registers val va_code_Restore_registers : win:bool -> Tot va_code val va_codegen_success_Restore_registers : win:bool -> Tot va_pbool val va_lemma_Restore_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Restore_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_reg64 rRsp va_sM (va_update_stack va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))))))))))))))))))))) [@ va_qattr] let va_wp_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rbp:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_stack:vale_stack) (va_x_rsp:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0)))))))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (()))) val va_wpProof_Restore_registers : win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15 va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) : (va_quickCode unit (va_code_Restore_registers win)) = (va_QProc (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) (va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15) (va_wpProof_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15)) //-- #reset-options "--z3rlimit 100" //-- Gcm_blocks_stdcall val va_code_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_code val va_codegen_success_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_pbool let va_req_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : prop = (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv))) let va_ens_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Gcm_blocks_stdcall va_b0 va_s0 win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))))))))))))))))))))))) val va_lemma_Gcm_blocks_stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_rsp:nat64) (va_x_rbp:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_memLayout:vale_heap_layout) (va_x_heap1:vale_heap) (va_x_heap2:vale_heap) (va_x_heap3:vale_heap) (va_x_heap4:vale_heap) (va_x_heap5:vale_heap) (va_x_heap6:vale_heap) (va_x_efl:Vale.X64.Flags.t) (va_x_stack:vale_stack) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_heaplet 6 va_x_heap6 (va_upd_mem_heaplet 5 va_x_heap5 (va_upd_mem_heaplet 4 va_x_heap4 (va_upd_mem_heaplet 3 va_x_heap3 (va_upd_mem_heaplet 2 va_x_heap2 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem_layout va_x_memLayout (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))))))))))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) ==> va_k va_sM (()))) val va_wpProof_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_Gcm_blocks_stdcall win alg)) = (va_QProc (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key) (va_wpProof_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key)) //-- //-- Compute_iv_stdcall val va_code_Compute_iv_stdcall : win:bool -> Tot va_code val va_codegen_success_Compute_iv_stdcall : win:bool -> Tot va_pbool let va_req_Compute_iv_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) : prop = (va_require_total va_b0 (va_code_Compute_iv_stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let (iv_bytes_LE:supported_iv_LE) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes iv_raw_quads) 0 num_bytes in iv_bytes_LE == iv))) let va_ens_Compute_iv_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Compute_iv_stdcall va_b0 va_s0 win iv iv_b num_bytes len j0_b iv_extra_b hkeys_b /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in Vale.X64.Decls.buffer128_read j0_b 0 (va_get_mem va_sM) == Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ Vale.X64.Decls.modifies_buffer128 j0_b (va_get_mem va_s0) (va_get_mem va_sM) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0)) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 7 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))) val va_lemma_Compute_iv_stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> iv:supported_iv_LE -> iv_b:buffer128 -> num_bytes:nat64 -> len:nat64 -> j0_b:buffer128 -> iv_extra_b:buffer128 -> hkeys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Compute_iv_stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let (iv_bytes_LE:supported_iv_LE) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes iv_raw_quads) 0 num_bytes in iv_bytes_LE == iv)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in Vale.X64.Decls.buffer128_read j0_b 0 (va_get_mem va_sM) == Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ Vale.X64.Decls.modifies_buffer128 j0_b (va_get_mem va_s0) (va_get_mem va_sM) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0)) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 7 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))))))))))))))))))) [@ va_qattr] let va_wp_Compute_iv_stdcall (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let (iv_bytes_LE:supported_iv_LE) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes iv_raw_quads) 0 num_bytes in iv_bytes_LE == iv)) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_rsp:nat64) (va_x_rbp:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_memLayout:vale_heap_layout) (va_x_heap7:vale_heap) (va_x_efl:Vale.X64.Flags.t) (va_x_stack:vale_stack) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_heaplet 7 va_x_heap7 (va_upd_mem_layout va_x_memLayout (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0))))))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in Vale.X64.Decls.buffer128_read j0_b 0 (va_get_mem va_sM) == Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ Vale.X64.Decls.modifies_buffer128 j0_b (va_get_mem va_s0) (va_get_mem va_sM) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0)) ==> va_k va_sM (()))) val va_wpProof_Compute_iv_stdcall : win:bool -> iv:supported_iv_LE -> iv_b:buffer128 -> num_bytes:nat64 -> len:nat64 -> j0_b:buffer128 -> iv_extra_b:buffer128 -> hkeys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Compute_iv_stdcall win iv iv_b num_bytes len j0_b iv_extra_b hkeys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Compute_iv_stdcall win) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 7; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> iv: Vale.AES.GCM_s.supported_iv_LE -> iv_b: Vale.X64.Memory.buffer128 -> num_bytes: Vale.X64.Memory.nat64 -> len: Vale.X64.Memory.nat64 -> j0_b: Vale.X64.Memory.buffer128 -> iv_extra_b: Vale.X64.Memory.buffer128 -> hkeys_b: Vale.X64.Memory.buffer128 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.GCMencryptOpt.va_code_Compute_iv_stdcall win)
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.AES.GCM_s.supported_iv_LE", "Vale.X64.Memory.buffer128", "Vale.X64.Memory.nat64", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.GCMencryptOpt.va_code_Compute_iv_stdcall", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_stackTaint", "Vale.X64.QuickCode.va_Mod_stack", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_mem_heaplet", "Vale.X64.QuickCode.va_Mod_mem_layout", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR15", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rR9", "Vale.X64.Machine_s.rR8", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rRsp", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRax", "Vale.X64.QuickCode.va_Mod_mem", "Prims.Nil", "Vale.AES.X64.GCMencryptOpt.va_wp_Compute_iv_stdcall", "Vale.AES.X64.GCMencryptOpt.va_wpProof_Compute_iv_stdcall", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Compute_iv_stdcall (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) : (va_quickCode unit (va_code_Compute_iv_stdcall win)) =
(va_QProc (va_code_Compute_iv_stdcall win) ([ va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 7; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem ]) (va_wp_Compute_iv_stdcall win iv iv_b num_bytes len j0_b iv_extra_b hkeys_b) (va_wpProof_Compute_iv_stdcall win iv iv_b num_bytes len j0_b iv_extra_b hkeys_b))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer_disjoints128
val buffer_disjoints128 (l: M.buffer128) (ls: list (M.buffer128)) : prop0
val buffer_disjoints128 (l: M.buffer128) (ls: list (M.buffer128)) : prop0
let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls)
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 365, "start_col": 0, "start_line": 364 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Vale.PPC64LE.Memory.buffer128 -> ls: Prims.list Vale.PPC64LE.Memory.buffer128 -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Prims.list", "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil", "Vale.Def.Prop_s.prop0", "Vale.PPC64LE.Decls.loc_locs_disjoint_rec128" ]
[]
false
false
false
true
false
let buffer_disjoints128 (l: M.buffer128) (ls: list (M.buffer128)) : prop0 =
norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls)
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_mem_heaplet
val va_update_mem_heaplet (n: heaplet_id) (sM sK: va_state) : va_state
val va_update_mem_heaplet (n: heaplet_id) (sM sK: va_state) : va_state
let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 71, "end_line": 193, "start_col": 19, "start_line": 192 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Vale.PPC64LE.Decls.heaplet_id -> sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_mem_heaplet", "Vale.Lib.Map16.sel", "Vale.Arch.HeapImpl.vale_heap", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heaplets", "Vale.PPC64LE.Decls.coerce", "Vale.Arch.HeapImpl.vale_full_heap", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap" ]
[]
false
false
false
true
false
let va_update_mem_heaplet (n: heaplet_id) (sM sK: va_state) : va_state =
va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer_disjoints64_128
val buffer_disjoints64_128 (l: M.buffer64) (ls: list (M.buffer128)) : prop0
val buffer_disjoints64_128 (l: M.buffer64) (ls: list (M.buffer128)) : prop0
let buffer_disjoints64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec64_128]] (loc_locs_disjoint_rec64_128 l ls)
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 98, "end_line": 374, "start_col": 0, "start_line": 373 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t unfold let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls) let rec loc_locs_disjoint_rec64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Vale.PPC64LE.Memory.buffer64 -> ls: Prims.list Vale.PPC64LE.Memory.buffer128 -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer64", "Prims.list", "Vale.PPC64LE.Memory.buffer128", "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil", "Vale.Def.Prop_s.prop0", "Vale.PPC64LE.Decls.loc_locs_disjoint_rec64_128" ]
[]
false
false
false
true
false
let buffer_disjoints64_128 (l: M.buffer64) (ls: list (M.buffer128)) : prop0 =
norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec64_128]] (loc_locs_disjoint_rec64_128 l ls)
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.validSrcAddrsOffset128
val validSrcAddrsOffset128 : h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer128 -> offset: Prims.int -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 321, "start_col": 0, "start_line": 320 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> addr: Prims.int -> b: Vale.PPC64LE.Memory.buffer128 -> offset: Prims.int -> len: Prims.int -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> tn: Vale.Arch.HeapTypes_s.taint -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Prims.int", "Vale.PPC64LE.Memory.buffer128", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Decls.validSrcAddrs", "Vale.PPC64LE.Memory.vuint128", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.logical" ]
[]
false
false
false
true
true
let validSrcAddrsOffset128 (h: vale_heap) (addr: int) (b: M.buffer128) (offset len: int) (layout: vale_heap_layout) (tn: taint) =
validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_ensure_total
val va_ensure_total (c0: va_code) (s0 s1: va_state) (f1: va_fuel) : prop0
val va_ensure_total (c0: va_code) (s0 s1: va_state) (f1: va_fuel) : prop0
let va_ensure_total (c0:va_code) (s0:va_state) (s1:va_state) (f1:va_fuel) : prop0 = eval_code c0 s0 f1 s1 /\ state_inv s1
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 391, "start_col": 0, "start_line": 390 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t unfold let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls) let rec loc_locs_disjoint_rec64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t unfold let buffer_disjoints64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec64_128]] (loc_locs_disjoint_rec64_128 l ls) unfold let buffers3_disjoint128 (b1 b2 b3:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2; loc_buffer b3] val eval_code (c:va_code) (s0:va_state) (f0:va_fuel) (sN:va_state) : prop0 val eval_while_inv (c:va_code) (s0:va_state) (fW:va_fuel) (sW:va_state) : prop0 [@va_qattr] let va_state_eq (s0:va_state) (s1:va_state) : prop0 = state_eq s0 s1 let state_inv (s:state) : prop0 = M.mem_inv (coerce s.ms_heap) let va_require_total (c0:va_code) (c1:va_code) (s0:va_state) : prop0 = c0 == c1 /\ state_inv s0
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c0: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> s1: Vale.PPC64LE.Decls.va_state -> f1: Vale.PPC64LE.Decls.va_fuel -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_code", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_fuel", "Prims.l_and", "Vale.PPC64LE.Decls.eval_code", "Vale.PPC64LE.Decls.state_inv", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let va_ensure_total (c0: va_code) (s0 s1: va_state) (f1: va_fuel) : prop0 =
eval_code c0 s0 f1 s1 /\ state_inv s1
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_require_total
val va_require_total (c0 c1: va_code) (s0: va_state) : prop0
val va_require_total (c0 c1: va_code) (s0: va_state) : prop0
let va_require_total (c0:va_code) (c1:va_code) (s0:va_state) : prop0 = c0 == c1 /\ state_inv s0
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 388, "start_col": 0, "start_line": 387 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t unfold let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls) let rec loc_locs_disjoint_rec64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t unfold let buffer_disjoints64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec64_128]] (loc_locs_disjoint_rec64_128 l ls) unfold let buffers3_disjoint128 (b1 b2 b3:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2; loc_buffer b3] val eval_code (c:va_code) (s0:va_state) (f0:va_fuel) (sN:va_state) : prop0 val eval_while_inv (c:va_code) (s0:va_state) (fW:va_fuel) (sW:va_state) : prop0 [@va_qattr] let va_state_eq (s0:va_state) (s1:va_state) : prop0 = state_eq s0 s1 let state_inv (s:state) : prop0 = M.mem_inv (coerce s.ms_heap)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c0: Vale.PPC64LE.Decls.va_code -> c1: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_code", "Vale.PPC64LE.Decls.va_state", "Prims.l_and", "Prims.eq2", "Vale.PPC64LE.Decls.state_inv", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let va_require_total (c0 c1: va_code) (s0: va_state) : prop0 =
c0 == c1 /\ state_inv s0
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_state_eq
val va_state_eq (s0 s1: va_state) : prop0
val va_state_eq (s0 s1: va_state) : prop0
let va_state_eq (s0:va_state) (s1:va_state) : prop0 = state_eq s0 s1
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 383, "start_col": 0, "start_line": 383 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t unfold let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls) let rec loc_locs_disjoint_rec64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t unfold let buffer_disjoints64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec64_128]] (loc_locs_disjoint_rec64_128 l ls) unfold let buffers3_disjoint128 (b1 b2 b3:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2; loc_buffer b3] val eval_code (c:va_code) (s0:va_state) (f0:va_fuel) (sN:va_state) : prop0 val eval_while_inv (c:va_code) (s0:va_state) (fW:va_fuel) (sW:va_state) : prop0
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: Vale.PPC64LE.Decls.va_state -> s1: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.State.state_eq", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let va_state_eq (s0 s1: va_state) : prop0 =
state_eq s0 s1
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_evalCond
val va_evalCond (b: ocmp) (s: va_state) : GTot bool
val va_evalCond (b: ocmp) (s: va_state) : GTot bool
let va_evalCond (b:ocmp) (s:va_state) : GTot bool = eval_ocmp s b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 398, "start_col": 7, "start_line": 398 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t unfold let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls) let rec loc_locs_disjoint_rec64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t unfold let buffer_disjoints64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec64_128]] (loc_locs_disjoint_rec64_128 l ls) unfold let buffers3_disjoint128 (b1 b2 b3:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2; loc_buffer b3] val eval_code (c:va_code) (s0:va_state) (f0:va_fuel) (sN:va_state) : prop0 val eval_while_inv (c:va_code) (s0:va_state) (fW:va_fuel) (sW:va_state) : prop0 [@va_qattr] let va_state_eq (s0:va_state) (s1:va_state) : prop0 = state_eq s0 s1 let state_inv (s:state) : prop0 = M.mem_inv (coerce s.ms_heap) let va_require_total (c0:va_code) (c1:va_code) (s0:va_state) : prop0 = c0 == c1 /\ state_inv s0 let va_ensure_total (c0:va_code) (s0:va_state) (s1:va_state) (f1:va_fuel) : prop0 = eval_code c0 s0 f1 s1 /\ state_inv s1 val va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures True)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Decls.ocmp -> s: Vale.PPC64LE.Decls.va_state -> Prims.GTot Prims.bool
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.eval_ocmp", "Prims.bool" ]
[]
false
false
false
false
false
let va_evalCond (b: ocmp) (s: va_state) : GTot bool =
eval_ocmp s b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffers3_disjoint128
val buffers3_disjoint128 : b1: Vale.PPC64LE.Memory.buffer128 -> b2: Vale.PPC64LE.Memory.buffer128 -> b3: Vale.PPC64LE.Memory.buffer128 -> Vale.Def.Prop_s.prop0
let buffers3_disjoint128 (b1 b2 b3:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2; loc_buffer b3]
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 377, "start_col": 7, "start_line": 376 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t unfold let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls) let rec loc_locs_disjoint_rec64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t unfold let buffer_disjoints64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec64_128]] (loc_locs_disjoint_rec64_128 l ls)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: Vale.PPC64LE.Memory.buffer128 -> b2: Vale.PPC64LE.Memory.buffer128 -> b3: Vale.PPC64LE.Memory.buffer128 -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.locs_disjoint", "Prims.Cons", "Vale.PPC64LE.Memory.loc", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint128", "Prims.Nil", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let buffers3_disjoint128 (b1 b2 b3: M.buffer128) =
locs_disjoint [loc_buffer b1; loc_buffer b2; loc_buffer b3]
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_whileInv_total
val va_whileInv_total (b: ocmp) (c: va_code) (s0 sN: va_state) (f0: va_fuel) : prop0
val va_whileInv_total (b: ocmp) (c: va_code) (s0 sN: va_state) (f0: va_fuel) : prop0
let va_whileInv_total (b:ocmp) (c:va_code) (s0:va_state) (sN:va_state) (f0:va_fuel) : prop0 = eval_while_inv (While b c) s0 f0 sN /\ state_inv s0
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 512, "start_col": 0, "start_line": 511 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t unfold let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls) let rec loc_locs_disjoint_rec64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t unfold let buffer_disjoints64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec64_128]] (loc_locs_disjoint_rec64_128 l ls) unfold let buffers3_disjoint128 (b1 b2 b3:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2; loc_buffer b3] val eval_code (c:va_code) (s0:va_state) (f0:va_fuel) (sN:va_state) : prop0 val eval_while_inv (c:va_code) (s0:va_state) (fW:va_fuel) (sW:va_state) : prop0 [@va_qattr] let va_state_eq (s0:va_state) (s1:va_state) : prop0 = state_eq s0 s1 let state_inv (s:state) : prop0 = M.mem_inv (coerce s.ms_heap) let va_require_total (c0:va_code) (c1:va_code) (s0:va_state) : prop0 = c0 == c1 /\ state_inv s0 let va_ensure_total (c0:va_code) (s0:va_state) (s1:va_state) (f1:va_fuel) : prop0 = eval_code c0 s0 f1 s1 /\ state_inv s1 val va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures True) val eval_ocmp : s:va_state -> c:ocmp -> GTot bool unfold let va_evalCond (b:ocmp) (s:va_state) : GTot bool = eval_ocmp s b val valid_ocmp : c:ocmp -> s:va_state -> GTot bool val eval_cmp_cr0 : s:va_state -> c:ocmp -> cr0_t val lemma_cmp_eq : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures (eval_ocmp s (va_cmp_eq o1 o2)) <==> (va_eval_cmp_opr s o1 == va_eval_cmp_opr s o2)) [SMTPat (eval_ocmp s (va_cmp_eq o1 o2))] val lemma_cmp_ne : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures (eval_ocmp s (va_cmp_ne o1 o2)) <==> (va_eval_cmp_opr s o1 <> va_eval_cmp_opr s o2)) [SMTPat (eval_ocmp s (va_cmp_ne o1 o2))] val lemma_cmp_le : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures (eval_ocmp s (va_cmp_le o1 o2)) <==> (va_eval_cmp_opr s o1 <= va_eval_cmp_opr s o2)) [SMTPat (eval_ocmp s (va_cmp_le o1 o2))] val lemma_cmp_ge : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures (eval_ocmp s (va_cmp_ge o1 o2)) <==> (va_eval_cmp_opr s o1 >= va_eval_cmp_opr s o2)) [SMTPat (eval_ocmp s (va_cmp_ge o1 o2))] val lemma_cmp_lt : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures (eval_ocmp s (va_cmp_lt o1 o2)) <==> (va_eval_cmp_opr s o1 < va_eval_cmp_opr s o2)) [SMTPat (eval_ocmp s (va_cmp_lt o1 o2))] val lemma_cmp_gt : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures (eval_ocmp s (va_cmp_gt o1 o2)) <==> (va_eval_cmp_opr s o1 > va_eval_cmp_opr s o2)) [SMTPat (eval_ocmp s (va_cmp_gt o1 o2))] val lemma_valid_cmp_eq : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures valid_first_cmp_opr o1 ==> (valid_ocmp (va_cmp_eq o1 o2) s)) [SMTPat (valid_ocmp (va_cmp_eq o1 o2) s)] val lemma_valid_cmp_ne : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures valid_first_cmp_opr o1 ==> (valid_ocmp (va_cmp_ne o1 o2) s)) [SMTPat (valid_ocmp (va_cmp_ne o1 o2) s)] val lemma_valid_cmp_le : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures valid_first_cmp_opr o1 ==> (valid_ocmp (va_cmp_le o1 o2) s)) [SMTPat (valid_ocmp (va_cmp_le o1 o2) s)] val lemma_valid_cmp_ge : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures valid_first_cmp_opr o1 ==> (valid_ocmp (va_cmp_ge o1 o2) s)) [SMTPat (valid_ocmp (va_cmp_ge o1 o2) s)] val lemma_valid_cmp_lt : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures valid_first_cmp_opr o1 ==> (valid_ocmp (va_cmp_lt o1 o2) s)) [SMTPat (valid_ocmp (va_cmp_lt o1 o2) s)] val lemma_valid_cmp_gt : s:va_state -> o1:cmp_opr -> o2:cmp_opr -> Lemma (requires True) (ensures valid_first_cmp_opr o1 ==> (valid_ocmp (va_cmp_gt o1 o2) s)) [SMTPat (valid_ocmp (va_cmp_gt o1 o2) s)] val va_compute_merge_total (f0:va_fuel) (fM:va_fuel) : va_fuel val va_lemma_merge_total (b0:va_codes) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires Cons? b0 /\ eval_code (Cons?.hd b0) s0 f0 sM /\ eval_code (va_Block (Cons?.tl b0)) sM fM sN ) (ensures (fun fN -> fN == va_compute_merge_total f0 fM /\ eval_code (va_Block b0) s0 fN sN )) val va_lemma_empty_total (s0:va_state) (bN:va_codes) : Ghost (va_state & va_fuel) (requires True) (ensures (fun (sM, fM) -> s0 == sM /\ eval_code (va_Block []) s0 fM sM )) val va_lemma_ifElse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) : Ghost (bool & va_state & va_state & va_fuel) (requires True) (ensures (fun (cond, sM, sN, f0) -> cond == eval_ocmp s0 ifb /\ sM == ({s0 with cr0 = eval_cmp_cr0 s0 ifb}) )) val va_lemma_ifElseTrue_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ eval_ocmp s0 ifb /\ eval_code ct ({s0 with cr0 = eval_cmp_cr0 s0 ifb}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM ) val va_lemma_ifElseFalse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ not (eval_ocmp s0 ifb) /\ eval_code cf ({s0 with cr0 = eval_cmp_cr0 s0 ifb}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Decls.ocmp -> c: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> sN: Vale.PPC64LE.Decls.va_state -> f0: Vale.PPC64LE.Decls.va_fuel -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.ocmp", "Vale.PPC64LE.Decls.va_code", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_fuel", "Prims.l_and", "Vale.PPC64LE.Decls.eval_while_inv", "Vale.PPC64LE.Machine_s.While", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.state_inv", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let va_whileInv_total (b: ocmp) (c: va_code) (s0 sN: va_state) (f0: va_fuel) : prop0 =
eval_while_inv (While b c) s0 f0 sN /\ state_inv s0
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffers_readable
val buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l)
val buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l)
let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l'
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 283, "start_col": 0, "start_line": 280 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> l: Prims.list Vale.PPC64LE.Memory.buffer64 -> Prims.GTot Vale.Def.Prop_s.prop0
Prims.GTot
[ "sometrivial", "" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Prims.list", "Vale.PPC64LE.Memory.buffer64", "Prims.l_True", "Prims.l_and", "Vale.PPC64LE.Decls.buffer_readable", "Vale.PPC64LE.Memory.vuint64", "Vale.PPC64LE.Decls.buffers_readable", "Vale.Def.Prop_s.prop0" ]
[ "recursion" ]
false
false
false
false
false
let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) =
match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l'
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_ens_Gcm_blocks_stdcall
val va_ens_Gcm_blocks_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (plain_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) (va_sM: va_state) (va_fM: va_fuel) : prop
val va_ens_Gcm_blocks_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (plain_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) (va_sM: va_state) (va_fM: va_fuel) : prop
let va_ens_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Gcm_blocks_stdcall va_b0 va_s0 win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))))))))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 979, "start_col": 0, "start_line": 870 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win)) //-- //-- Restore_registers val va_code_Restore_registers : win:bool -> Tot va_code val va_codegen_success_Restore_registers : win:bool -> Tot va_pbool val va_lemma_Restore_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Restore_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_reg64 rRsp va_sM (va_update_stack va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))))))))))))))))))))) [@ va_qattr] let va_wp_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rbp:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_stack:vale_stack) (va_x_rsp:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0)))))))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (()))) val va_wpProof_Restore_registers : win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15 va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) : (va_quickCode unit (va_code_Restore_registers win)) = (va_QProc (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) (va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15) (va_wpProof_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15)) //-- #reset-options "--z3rlimit 100" //-- Gcm_blocks_stdcall val va_code_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_code val va_codegen_success_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_pbool let va_req_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : prop = (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE ==
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
va_b0: Vale.X64.Decls.va_code -> va_s0: Vale.X64.Decls.va_state -> win: Prims.bool -> alg: Vale.AES.AES_common_s.algorithm -> auth_b: Vale.X64.Memory.buffer128 -> auth_bytes: Vale.X64.Memory.nat64 -> auth_num: Vale.X64.Memory.nat64 -> keys_b: Vale.X64.Memory.buffer128 -> iv_b: Vale.X64.Memory.buffer128 -> iv: Vale.AES.GCM_s.supported_iv_LE -> hkeys_b: Vale.X64.Memory.buffer128 -> abytes_b: Vale.X64.Memory.buffer128 -> in128x6_b: Vale.X64.Memory.buffer128 -> out128x6_b: Vale.X64.Memory.buffer128 -> len128x6_num: Vale.X64.Memory.nat64 -> in128_b: Vale.X64.Memory.buffer128 -> out128_b: Vale.X64.Memory.buffer128 -> len128_num: Vale.X64.Memory.nat64 -> inout_b: Vale.X64.Memory.buffer128 -> plain_num: Vale.X64.Memory.nat64 -> scratch_b: Vale.X64.Memory.buffer128 -> tag_b: Vale.X64.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> va_sM: Vale.X64.Decls.va_state -> va_fM: Vale.X64.Decls.va_fuel -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Decls.va_code", "Vale.X64.Decls.va_state", "Prims.bool", "Vale.AES.AES_common_s.algorithm", "Vale.X64.Memory.buffer128", "Vale.X64.Memory.nat64", "Vale.AES.GCM_s.supported_iv_LE", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Decls.va_fuel", "Prims.l_and", "Vale.AES.X64.GCMencryptOpt.va_req_Gcm_blocks_stdcall", "Vale.X64.Decls.va_ensure_total", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.Decls.modifies_mem", "Vale.X64.Decls.loc_union", "Vale.X64.Decls.loc_buffer", "Vale.X64.Memory.vuint128", "Vale.X64.Decls.va_get_mem", "Prims.op_LessThan", "Vale.X64.Machine_s.pow2_32", "FStar.Seq.Base.length", "Vale.Def.Types_s.nat8", "Vale.AES.AES_common_s.is_aes_key", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE", "Prims.eq2", "FStar.Pervasives.Native.__proj__Mktuple2__item___1", "Vale.AES.GCM_s.gcm_encrypt_LE", "Vale.Def.Types_s.le_quad32_to_bytes", "Vale.X64.Decls.buffer128_read", "FStar.Pervasives.Native.__proj__Mktuple2__item___2", "Vale.Def.Types_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRsp", "Prims.l_imp", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR15", "Vale.X64.Decls.quad32", "Vale.X64.Decls.va_get_xmm", "Prims.l_not", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.slice", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.append", "Vale.X64.Decls.s128", "Vale.X64.Decls.va_int_range", "Vale.X64.Stack_i.load_stack64", "Prims.op_Addition", "Vale.X64.Decls.va_get_stack", "Vale.X64.Machine_s.rR9", "Vale.X64.Machine_s.rR8", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Vale.X64.Decls.va_state_eq", "Vale.X64.Decls.va_update_stackTaint", "Vale.X64.Decls.va_update_stack", "Vale.X64.Decls.va_update_flags", "Vale.X64.Decls.va_update_mem_heaplet", "Vale.X64.Decls.va_update_mem_layout", "Vale.X64.Decls.va_update_xmm", "Vale.X64.Decls.va_update_reg64", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rRax", "Vale.X64.Decls.va_update_ok", "Vale.X64.Decls.va_update_mem", "Prims.prop" ]
[]
false
false
false
true
true
let va_ens_Gcm_blocks_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (plain_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) (va_sM: va_state) (va_fM: va_fuel) : prop =
(va_req_Gcm_blocks_stdcall va_b0 va_s0 win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let auth_ptr:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let auth_num_bytes:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let auth_len:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let keys_ptr:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let iv_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let xip:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let abytes_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let in128x6_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let out128x6_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let len128x6:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let in128_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let out128_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let len128:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let inout_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let plain_num_bytes:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let scratch_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let tag_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM ( va_update_xmm 1 va_sM ( va_update_xmm 0 va_sM ( va_update_reg64 rR15 va_sM ( va_update_reg64 rR14 va_sM ( va_update_reg64 rR13 va_sM ( va_update_reg64 rR12 va_sM ( va_update_reg64 rR11 va_sM ( va_update_reg64 rR10 va_sM ( va_update_reg64 rR9 va_sM ( va_update_reg64 rR8 va_sM ( va_update_reg64 rRbp va_sM ( va_update_reg64 rRsp va_sM ( va_update_reg64 rRsi va_sM ( va_update_reg64 rRdi va_sM ( va_update_reg64 rRdx va_sM ( va_update_reg64 rRcx va_sM ( va_update_reg64 rRbx va_sM ( va_update_reg64 rRax va_sM ( va_update_ok va_sM ( va_update_mem va_sM va_s0 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )) )))))))))))) )))))))))))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.loc_locs_disjoint_rec64_128
val loc_locs_disjoint_rec64_128 (l: M.buffer64) (ls: list (M.buffer128)) : prop0
val loc_locs_disjoint_rec64_128 (l: M.buffer64) (ls: list (M.buffer128)) : prop0
let rec loc_locs_disjoint_rec64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 89, "end_line": 370, "start_col": 0, "start_line": 367 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t unfold let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Vale.PPC64LE.Memory.buffer64 -> ls: Prims.list Vale.PPC64LE.Memory.buffer128 -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer64", "Prims.list", "Vale.PPC64LE.Memory.buffer128", "Prims.l_True", "Prims.l_and", "Vale.PPC64LE.Decls.locs_disjoint", "Prims.Cons", "Vale.PPC64LE.Memory.loc", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint64", "Vale.PPC64LE.Memory.vuint128", "Prims.Nil", "Vale.PPC64LE.Decls.loc_locs_disjoint_rec64_128", "Vale.Def.Prop_s.prop0" ]
[ "recursion" ]
false
false
false
true
false
let rec loc_locs_disjoint_rec64_128 (l: M.buffer64) (ls: list (M.buffer128)) : prop0 =
match ls with | [] -> True | h :: t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_wp_Compute_iv_stdcall
val va_wp_Compute_iv_stdcall (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_Compute_iv_stdcall (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_Compute_iv_stdcall (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let (iv_bytes_LE:supported_iv_LE) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes iv_raw_quads) 0 num_bytes in iv_bytes_LE == iv)) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_rsp:nat64) (va_x_rbp:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_memLayout:vale_heap_layout) (va_x_heap7:vale_heap) (va_x_efl:Vale.X64.Flags.t) (va_x_stack:vale_stack) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_heaplet 7 va_x_heap7 (va_upd_mem_layout va_x_memLayout (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0))))))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in Vale.X64.Decls.buffer128_read j0_b 0 (va_get_mem va_sM) == Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ Vale.X64.Decls.modifies_buffer128 j0_b (va_get_mem va_s0) (va_get_mem va_sM) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0)) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 1803, "start_col": 0, "start_line": 1713 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win)) //-- //-- Restore_registers val va_code_Restore_registers : win:bool -> Tot va_code val va_codegen_success_Restore_registers : win:bool -> Tot va_pbool val va_lemma_Restore_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Restore_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_reg64 rRsp va_sM (va_update_stack va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))))))))))))))))))))) [@ va_qattr] let va_wp_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rbp:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_stack:vale_stack) (va_x_rsp:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0)))))))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (()))) val va_wpProof_Restore_registers : win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15 va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) : (va_quickCode unit (va_code_Restore_registers win)) = (va_QProc (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) (va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15) (va_wpProof_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15)) //-- #reset-options "--z3rlimit 100" //-- Gcm_blocks_stdcall val va_code_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_code val va_codegen_success_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_pbool let va_req_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : prop = (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv))) let va_ens_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Gcm_blocks_stdcall va_b0 va_s0 win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))))))))))))))))))))))) val va_lemma_Gcm_blocks_stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 4 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_rsp:nat64) (va_x_rbp:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_memLayout:vale_heap_layout) (va_x_heap1:vale_heap) (va_x_heap2:vale_heap) (va_x_heap3:vale_heap) (va_x_heap4:vale_heap) (va_x_heap5:vale_heap) (va_x_heap6:vale_heap) (va_x_efl:Vale.X64.Flags.t) (va_x_stack:vale_stack) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_heaplet 6 va_x_heap6 (va_upd_mem_heaplet 5 va_x_heap5 (va_upd_mem_heaplet 4 va_x_heap4 (va_upd_mem_heaplet 3 va_x_heap3 (va_upd_mem_heaplet 2 va_x_heap2 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem_layout va_x_memLayout (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))))))))))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 tag_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b)))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 plain_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 plain_num_bytes in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 plain_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (cipher_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes))) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_sM)) == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) (Vale.AES.GCM_s.gcm_encrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv plain_bytes auth_bytes)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) ==> va_k va_sM (()))) val va_wpProof_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> plain_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_Gcm_blocks_stdcall win alg)) = (va_QProc (va_code_Gcm_blocks_stdcall win alg) ([va_Mod_stackTaint; va_Mod_stack; va_Mod_flags; va_Mod_mem_heaplet 6; va_Mod_mem_heaplet 5; va_Mod_mem_heaplet 4; va_Mod_mem_heaplet 3; va_Mod_mem_heaplet 2; va_Mod_mem_heaplet 1; va_Mod_mem_layout; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_reg64 rR9; va_Mod_reg64 rR8; va_Mod_reg64 rRbp; va_Mod_reg64 rRsp; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key) (va_wpProof_Gcm_blocks_stdcall win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b plain_num scratch_b tag_b key)) //-- //-- Compute_iv_stdcall val va_code_Compute_iv_stdcall : win:bool -> Tot va_code val va_codegen_success_Compute_iv_stdcall : win:bool -> Tot va_pbool let va_req_Compute_iv_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) : prop = (va_require_total va_b0 (va_code_Compute_iv_stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let (iv_bytes_LE:supported_iv_LE) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes iv_raw_quads) 0 num_bytes in iv_bytes_LE == iv))) let va_ens_Compute_iv_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (iv:supported_iv_LE) (iv_b:buffer128) (num_bytes:nat64) (len:nat64) (j0_b:buffer128) (iv_extra_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Compute_iv_stdcall va_b0 va_s0 win iv iv_b num_bytes len j0_b iv_extra_b hkeys_b /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in Vale.X64.Decls.buffer128_read j0_b 0 (va_get_mem va_sM) == Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ Vale.X64.Decls.modifies_buffer128 j0_b (va_get_mem va_s0) (va_get_mem va_sM) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0)) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 7 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))) val va_lemma_Compute_iv_stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> iv:supported_iv_LE -> iv_b:buffer128 -> num_bytes:nat64 -> len:nat64 -> j0_b:buffer128 -> iv_extra_b:buffer128 -> hkeys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Compute_iv_stdcall win) va_s0 /\ va_get_ok va_s0 /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let (iv_bytes_LE:supported_iv_LE) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes iv_raw_quads) 0 num_bytes in iv_bytes_LE == iv)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (bytes_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (len_reg:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (j0_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (extra_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (h_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (h_LE:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in Vale.X64.Decls.buffer128_read j0_b 0 (va_get_mem va_sM) == Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ Vale.X64.Decls.modifies_buffer128 j0_b (va_get_mem va_s0) (va_get_mem va_sM) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0)) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_heaplet 7 va_sM (va_update_mem_layout va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> iv: Vale.AES.GCM_s.supported_iv_LE -> iv_b: Vale.X64.Memory.buffer128 -> num_bytes: Vale.X64.Memory.nat64 -> len: Vale.X64.Memory.nat64 -> j0_b: Vale.X64.Memory.buffer128 -> iv_extra_b: Vale.X64.Memory.buffer128 -> hkeys_b: Vale.X64.Memory.buffer128 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.AES.GCM_s.supported_iv_LE", "Vale.X64.Memory.buffer128", "Vale.X64.Memory.nat64", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Prims.eq2", "Vale.Def.Words_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRsp", "Vale.X64.Stack_i.init_rsp", "Vale.X64.Decls.va_get_stack", "Vale.X64.Memory.is_initial_heap", "Vale.X64.Decls.va_get_mem_layout", "Vale.X64.Decls.va_get_mem", "Prims.l_imp", "Vale.X64.Stack_i.valid_stack_slot64", "Prims.op_Addition", "Vale.Arch.HeapTypes_s.Public", "Vale.X64.Decls.va_get_stackTaint", "Prims.int", "Prims.l_or", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Vale.Def.Words_s.pow2_64", "Vale.X64.Decls.validSrcAddrs128", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.validDstAddrs128", "Vale.X64.Decls.buffers_disjoint128", "Prims.nat", "Vale.X64.Decls.buffer_length", "Vale.X64.Memory.vuint128", "Prims.op_Multiply", "Vale.X64.Machine_s.pow2_64", "Vale.X64.Decls.va_mul_nat", "Prims.op_Division", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.AES.OptPublic.hkeys_reqs_pub", "Vale.X64.Decls.s128", "Vale.Def.Types_s.reverse_bytes_quad32", "FStar.Seq.Base.slice", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.append", "Vale.X64.Decls.quad32", "Vale.X64.Decls.buffer128_read", "Vale.X64.Decls.va_int_range", "Vale.X64.Decls.va_if", "Vale.X64.Stack_i.load_stack64", "Prims.l_not", "Vale.X64.Machine_s.rR9", "Vale.X64.Machine_s.rR8", "Vale.Def.Types_s.nat64", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRdi", "Prims.l_Forall", "Vale.X64.InsBasic.vale_heap", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.X64.Flags.t", "Vale.X64.InsBasic.vale_stack", "Vale.X64.Memory.memtaint", "Vale.AES.GCM_s.compute_iv_BE", "Vale.X64.Decls.modifies_buffer128", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR15", "Vale.X64.Decls.va_get_xmm", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_stackTaint", "Vale.X64.Decls.va_upd_stack", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_mem_heaplet", "Vale.X64.Decls.va_upd_mem_layout", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rRax", "Vale.X64.Decls.va_upd_mem" ]
[]
false
false
false
true
true
let va_wp_Compute_iv_stdcall (win: bool) (iv: supported_iv_LE) (iv_b: buffer128) (num_bytes len: nat64) (j0_b iv_extra_b hkeys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (let iv_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let bytes_reg:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let len_reg:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let j0_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let extra_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let h_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let h_LE:Vale.Def.Types_s.quad32 = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ bytes_reg == num_bytes /\ len_reg == len /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) iv_ptr iv_b len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) extra_ptr iv_extra_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) j0_ptr j0_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) h_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffers_disjoint128 iv_b iv_extra_b /\ Vale.X64.Decls.buffers_disjoint128 iv_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 iv_extra_b hkeys_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b iv_b /\ Vale.X64.Decls.buffers_disjoint128 j0_b hkeys_b /\ (Vale.X64.Decls.buffers_disjoint128 j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_b == len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 iv_extra_b == 1 /\ iv_ptr + 16 `op_Multiply` len < pow2_64 /\ h_ptr + 32 < pow2_64 /\ (va_mul_nat len (128 `op_Division` 8) <= num_bytes /\ num_bytes < va_mul_nat len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (0 < 8 `op_Multiply` num_bytes /\ 8 `op_Multiply` num_bytes < pow2_64) /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ (let iv_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) iv_extra_b) in let iv_bytes_LE:supported_iv_LE = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes iv_raw_quads) 0 num_bytes in iv_bytes_LE == iv)) /\ (forall (va_x_mem: vale_heap) (va_x_rax: nat64) (va_x_rbx: nat64) (va_x_rcx: nat64) (va_x_rdx: nat64) (va_x_rdi: nat64) (va_x_rsi: nat64) (va_x_rsp: nat64) (va_x_rbp: nat64) (va_x_r8: nat64) (va_x_r9: nat64) (va_x_r10: nat64) (va_x_r11: nat64) (va_x_r12: nat64) (va_x_r13: nat64) (va_x_r14: nat64) (va_x_r15: nat64) (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32) (va_x_xmm9: quad32) (va_x_xmm10: quad32) (va_x_xmm11: quad32) (va_x_xmm12: quad32) (va_x_xmm13: quad32) (va_x_xmm14: quad32) (va_x_xmm15: quad32) (va_x_memLayout: vale_heap_layout) (va_x_heap7: vale_heap) (va_x_efl: Vale.X64.Flags.t) (va_x_stack: vale_stack) (va_x_stackTaint: memtaint). let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_heaplet 7 va_x_heap7 (va_upd_mem_layout va_x_memLayout (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 ( va_upd_reg64 rR12 va_x_r12 ( va_upd_reg64 rR11 va_x_r11 ( va_upd_reg64 rR10 va_x_r10 ( va_upd_reg64 rR9 va_x_r9 ( va_upd_reg64 rR8 va_x_r8 ( va_upd_reg64 rRbp va_x_rbp ( va_upd_reg64 rRsp va_x_rsp ( va_upd_reg64 rRsi va_x_rsi ( va_upd_reg64 rRdi va_x_rdi ( va_upd_reg64 rRdx va_x_rdx ( va_upd_reg64 rRcx va_x_rcx ( va_upd_reg64 rRbx va_x_rbx ( va_upd_reg64 rRax va_x_rax ( va_upd_mem va_x_mem va_s0 ) ) ) ) ) ) ) ) ) ) ) ) ) ) )) )))))))))) ))))))))))) in va_get_ok va_sM /\ (let iv_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let bytes_reg:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let len_reg:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let j0_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let extra_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let h_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let h_LE:Vale.Def.Types_s.quad32 = Vale.Def.Types_s.reverse_bytes_quad32 (Vale.X64.Decls.buffer128_read hkeys_b 2 (va_get_mem va_s0)) in Vale.X64.Decls.buffer128_read j0_b 0 (va_get_mem va_sM) == Vale.AES.GCM_s.compute_iv_BE h_LE iv /\ Vale.X64.Decls.modifies_buffer128 j0_b (va_get_mem va_s0) (va_get_mem va_sM) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0)) ==> va_k va_sM (())))
false
LowParse.Repr.fst
LowParse.Repr.valid
val valid (#t:Type) (p:repr_ptr t) (h:HS.mem) : prop
val valid (#t:Type) (p:repr_ptr t) (h:HS.mem) : prop
let valid (#t:Type) (p:repr_ptr t) (h:HS.mem) = valid' p h
{ "file_name": "src/lowparse/LowParse.Repr.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 14, "end_line": 35, "start_col": 0, "start_line": 34 }
(* Copyright 2015--2019 INRIA and Microsoft Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: T. Ramananandro, A. Rastogi, N. Swamy, A. Fromherz *) module LowParse.Repr module LP = LowParse.Low.Base module LS = LowParse.SLow.Base module B = LowStar.Buffer module HS = FStar.HyperStack module C = LowStar.ConstBuffer module U32 = FStar.UInt32 module U64 = FStar.UInt64 open FStar.Integers open FStar.HyperStack.ST module ST = FStar.HyperStack.ST module I = LowStar.ImmutableBuffer
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.ConstBuffer.fsti.checked", "LowStar.Buffer.fst.checked", "LowParse.SLow.Base.fst.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "LowParse.Repr.fst" }
[ { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.ConstBuffer", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "LowParse.SLow.Base", "short_module": "LS" }, { "abbrev": true, "full_module": "LowParse.Low.Base", "short_module": "LP" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "I" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.ConstBuffer", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "LowParse.SLow.Base", "short_module": "LS" }, { "abbrev": true, "full_module": "LowParse.Low.Base", "short_module": "LP" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: LowParse.Repr.repr_ptr t -> h: FStar.Monotonic.HyperStack.mem -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "LowParse.Repr.repr_ptr", "FStar.Monotonic.HyperStack.mem", "LowParse.Repr.valid'", "Prims.prop" ]
[]
false
false
false
true
true
let valid (#t: Type) (p: repr_ptr t) (h: HS.mem) =
valid' p h
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.loc_locs_disjoint_rec128
val loc_locs_disjoint_rec128 (l: M.buffer128) (ls: list (M.buffer128)) : prop0
val loc_locs_disjoint_rec128 (l: M.buffer128) (ls: list (M.buffer128)) : prop0
let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 86, "end_line": 361, "start_col": 0, "start_line": 358 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2]
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Vale.PPC64LE.Memory.buffer128 -> ls: Prims.list Vale.PPC64LE.Memory.buffer128 -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Prims.list", "Prims.l_True", "Prims.l_and", "Vale.PPC64LE.Decls.locs_disjoint", "Prims.Cons", "Vale.PPC64LE.Memory.loc", "Vale.PPC64LE.Decls.loc_buffer", "Vale.PPC64LE.Memory.vuint128", "Prims.Nil", "Vale.PPC64LE.Decls.loc_locs_disjoint_rec128", "Vale.Def.Prop_s.prop0" ]
[ "recursion" ]
false
false
false
true
false
let rec loc_locs_disjoint_rec128 (l: M.buffer128) (ls: list (M.buffer128)) : prop0 =
match ls with | [] -> True | h :: t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.state_inv
val state_inv (s: state) : prop0
val state_inv (s: state) : prop0
let state_inv (s:state) : prop0 = M.mem_inv (coerce s.ms_heap)
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 385, "start_col": 0, "start_line": 385 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64 unfold let va_value_vec_opr = quad32 unfold let va_value_heaplet = vale_heap [@va_qattr] let va_upd_operand_reg_opr (r:reg_opr) (v:nat64) (s:state) : state = va_upd_reg r v s [@va_qattr] let va_upd_operand_vec_opr (x:vec) (v:quad32) (s:state) : state = va_upd_vec x v s [@va_qattr] let va_upd_operand_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = va_upd_mem_heaplet n h s let va_lemma_upd_update (sM:state) : Lemma ( (forall (sK:state).{:pattern (va_update_xer sM sK)} va_update_xer sM sK == va_upd_xer sM.xer sK) /\ (forall (sK:state) (h:heaplet_id).{:pattern (va_update_operand_heaplet h sM sK)} va_update_operand_heaplet h sM sK == va_upd_operand_heaplet h (Map16.sel (coerce sM.ms_heap).vf_heaplets h) sK) /\ (forall (sK:state) (r:reg).{:pattern (va_update_operand_reg_opr r sM sK)} va_update_operand_reg_opr r sM sK == va_upd_operand_reg_opr r (eval_reg r sM) sK) /\ (forall (sK:state) (x:vec).{:pattern (va_update_operand_vec_opr x sM sK)} va_update_operand_vec_opr x sM sK == va_upd_operand_vec_opr x (eval_vec x sM) sK) ) = () // Constructors for va_codes [@va_qattr] unfold let va_CNil () : va_codes = [] [@va_qattr] unfold let va_CCons (hd:va_code) (tl:va_codes) : va_codes = hd::tl // Constructors for va_code unfold let va_Block (block:va_codes) : va_code = Block block unfold let va_IfElse (ifCond:ocmp) (ifTrue:va_code) (ifFalse:va_code) : va_code = IfElse ifCond ifTrue ifFalse unfold let va_While (whileCond:ocmp) (whileBody:va_code) : va_code = While whileCond whileBody val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp unfold let va_get_block (c:va_code{Block? c}) : va_codes = Block?.block c unfold let va_get_ifCond (c:va_code{IfElse? c}) : ocmp = IfElse?.ifCond c unfold let va_get_ifTrue (c:va_code{IfElse? c}) : va_code = IfElse?.ifTrue c unfold let va_get_ifFalse (c:va_code{IfElse? c}) : va_code = IfElse?.ifFalse c unfold let va_get_whileCond (c:va_code{While? c}) : ocmp = While?.whileCond c unfold let va_get_whileBody (c:va_code{While? c}) : va_code = While?.whileBody c // Map syntax // syntax for map accesses, m.[key] and m.[key] <- value type map (key:eqtype) (value:Type) = Map.t key value let (.[]) = Map.sel let (.[]<-) = Map.upd (** Memory framing **) (* unfold let in_mem (addr:int) (m:mem) : bool = m `Map.contains` addr let disjoint (ptr1:int) (num_bytes1:int) (ptr2:int) (num_bytes2:int) = ptr1 + num_bytes1 <= ptr2 \/ ptr2 + num_bytes2 <= ptr1 let validSrcAddrs (mem:mem) (addr:int) (size:int) (num_bytes:int) = size == 64 /\ (forall (a:int) . {:pattern (mem `Map.contains` a)} addr <= a && a < addr+num_bytes && (a - addr) % 8 = 0 ==> mem `Map.contains` a) let memModified (old_mem:mem) (new_mem:mem) (ptr:int) (num_bytes) = (forall (a:int) . {:pattern (new_mem `Map.contains` a)} old_mem `Map.contains` a <==> new_mem `Map.contains` a) /\ (forall (a:int) . {:pattern (new_mem.[a]) \/ Map.sel new_mem a} a < ptr || a >= ptr + num_bytes ==> old_mem.[a] == new_mem.[ a]) *) (** Convenient memory-related functions **) let rec buffers_readable (h: vale_heap) (l: list M.buffer64) : GTot prop0 (decreases l) = match l with | [] -> True | b :: l' -> buffer_readable h b /\ buffers_readable h l' unfold let modifies_buffer (b:M.buffer64) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer_2 (b1 b2:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer_3 (b1 b2 b3:M.buffer64) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 unfold let modifies_buffer128 (b:M.buffer128) (h1 h2:vale_heap) = modifies_mem (loc_buffer b) h1 h2 unfold let modifies_buffer128_2 (b1 b2:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2 unfold let modifies_buffer128_3 (b1 b2 b3:M.buffer128) (h1 h2:vale_heap) = modifies_mem (M.loc_union (loc_buffer b1) (M.loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2 let validSrcAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = buffer_readable h b /\ len <= buffer_length b /\ M.buffer_addr b h == addr /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) false /\ M.valid_taint_buf b h layout.vl_taint tn let validDstAddrs (#t:base_typ) (h:vale_heap) (addr:int) (b:M.buffer t) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn /\ M.valid_layout_buffer_id t b layout (M.get_heaplet_id h) true /\ buffer_writeable b let validSrcAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs64 (h:vale_heap) (addr:int) (b:M.buffer64) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h addr b len layout tn let validDstAddrs128 (h:vale_heap) (addr:int) (b:M.buffer128) (len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h addr b len layout tn let validSrcAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validSrcAddrs h (addr - 16 * offset) b (len + offset) layout tn let validDstAddrsOffset128 (h:vale_heap) (addr:int) (b:M.buffer128) (offset len:int) (layout:vale_heap_layout) (tn:taint) = validDstAddrs h (addr - 16 * offset) b (len + offset) layout tn let modifies_buffer_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer128 b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let buffer_modifies_specific128 (b:M.buffer128) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer128_read b i h1 == buffer128_read b i h2) let modifies_buffer_specific (b:M.buffer64) (h1 h2:vale_heap) (start last:nat) : GTot prop0 = modifies_buffer b h1 h2 /\ // TODO: Consider replacing this with: modifies (loc_buffer (gsub_buffer b i len)) h1 h2 (forall (i:nat) . {:pattern (Seq.index (M.buffer_as_seq h2 b) i)} 0 <= i /\ i < buffer_length b /\ (i < start || i > last) ==> buffer64_read b i h1 == buffer64_read b i h2) unfold let buffers_disjoint (b1 b2:M.buffer64) = locs_disjoint [loc_buffer b1; loc_buffer b2] unfold let buffers_disjoint128 (b1 b2:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2] let rec loc_locs_disjoint_rec128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec128 l t unfold let buffer_disjoints128 (l:M.buffer128) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec128]] (loc_locs_disjoint_rec128 l ls) let rec loc_locs_disjoint_rec64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = match ls with | [] -> True | h::t -> locs_disjoint [loc_buffer l; loc_buffer h] /\ loc_locs_disjoint_rec64_128 l t unfold let buffer_disjoints64_128 (l:M.buffer64) (ls:list (M.buffer128)) : prop0 = norm [zeta; iota; delta_only [`%loc_locs_disjoint_rec64_128]] (loc_locs_disjoint_rec64_128 l ls) unfold let buffers3_disjoint128 (b1 b2 b3:M.buffer128) = locs_disjoint [loc_buffer b1; loc_buffer b2; loc_buffer b3] val eval_code (c:va_code) (s0:va_state) (f0:va_fuel) (sN:va_state) : prop0 val eval_while_inv (c:va_code) (s0:va_state) (fW:va_fuel) (sW:va_state) : prop0 [@va_qattr] let va_state_eq (s0:va_state) (s1:va_state) : prop0 = state_eq s0 s1
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.State.state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.State.state", "Vale.PPC64LE.Memory.mem_inv", "Vale.PPC64LE.Decls.coerce", "Vale.PPC64LE.Memory.vale_full_heap", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let state_inv (s: state) : prop0 =
M.mem_inv (coerce s.ms_heap)
false
Vale.AES.PPC64LE.GCTR.fsti
Vale.AES.PPC64LE.GCTR.va_wp_Gctr_blocks128
val va_wp_Gctr_blocks128 (alg: algorithm) (in_b out_b: buffer128) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_Gctr_blocks128 (alg: algorithm) (in_b out_b: buffer128) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ ((Vale.PPC64LE.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.PPC64LE.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 3 va_s0) in_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 7 va_s0) out_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg 3 va_s0 + 16 `op_Multiply` va_get_reg 6 va_s0 < pow2_64 /\ va_get_reg 7 va_s0 + 16 `op_Multiply` va_get_reg 6 va_s0 < pow2_64 /\ l_and (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 out_b) (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b < pow2_32) /\ va_get_reg 6 va_s0 == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b /\ va_get_reg 6 va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_mem:vale_heap) (va_x_r3:nat64) (va_x_r7:nat64) (va_x_r6:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r26:nat64) (va_x_r27:nat64) (va_x_r28:nat64) (va_x_r29:nat64) (va_x_r30:nat64) (va_x_r31:nat64) (va_x_v0:quad32) (va_x_v1:quad32) (va_x_v2:quad32) (va_x_v3:quad32) (va_x_v4:quad32) (va_x_v5:quad32) (va_x_v6:quad32) (va_x_v7:quad32) (va_x_v8:quad32) (va_x_v9:quad32) (va_x_v10:quad32) (va_x_v11:quad32) (va_x_v12:quad32) (va_x_v13:quad32) (va_x_v14:quad32) (va_x_v15:quad32) (va_x_v16:quad32) (va_x_v17:quad32) (va_x_v18:quad32) (va_x_v19:quad32) (va_x_cr0:cr0_t) (va_x_heap1:vale_heap) . let va_sM = va_upd_mem_heaplet 1 va_x_heap1 (va_upd_cr0 va_x_cr0 (va_upd_vec 19 va_x_v19 (va_upd_vec 18 va_x_v18 (va_upd_vec 17 va_x_v17 (va_upd_vec 16 va_x_v16 (va_upd_vec 15 va_x_v15 (va_upd_vec 14 va_x_v14 (va_upd_vec 13 va_x_v13 (va_upd_vec 12 va_x_v12 (va_upd_vec 11 va_x_v11 (va_upd_vec 10 va_x_v10 (va_upd_vec 9 va_x_v9 (va_upd_vec 8 va_x_v8 (va_upd_vec 7 va_x_v7 (va_upd_vec 6 va_x_v6 (va_upd_vec 5 va_x_v5 (va_upd_vec 4 va_x_v4 (va_upd_vec 3 va_x_v3 (va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 31 va_x_r31 (va_upd_reg 30 va_x_r30 (va_upd_reg 29 va_x_r29 (va_upd_reg 28 va_x_r28 (va_upd_reg 27 va_x_r27 (va_upd_reg 26 va_x_r26 (va_upd_reg 10 va_x_r10 (va_upd_reg 9 va_x_r9 (va_upd_reg 8 va_x_r8 (va_upd_reg 6 va_x_r6 (va_upd_reg 7 va_x_r7 (va_upd_reg 3 va_x_r3 (va_upd_mem va_x_mem va_s0)))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (Vale.PPC64LE.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR_BE.gctr_partial alg (va_get_reg 6 va_s0) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b)) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b)) key (va_get_vec 7 va_s0) /\ va_get_vec 7 va_sM == Vale.AES.GCTR_BE.inc32lite (va_get_vec 7 va_s0) (va_get_reg 6 va_s0) /\ (va_get_reg 6 va_s0 == 0 ==> Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b) /\ l_and (l_and (va_get_reg 3 va_sM == va_get_reg 3 va_s0) (va_get_reg 7 va_sM == va_get_reg 7 va_s0)) (va_get_reg 6 va_sM == va_get_reg 6 va_s0)) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.PPC64LE.GCTR.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 167, "start_col": 0, "start_line": 127 }
module Vale.AES.PPC64LE.GCTR open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open FStar.Seq open Vale.AES.AES_BE_s open Vale.AES.PPC64LE.AES open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GCM_helpers_BE open Vale.Poly1305.Math open Vale.Def.Words.Two_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.Memory open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Vale.PPC64LE.InsBasic open Vale.PPC64LE.InsMem open Vale.PPC64LE.InsVector open Vale.PPC64LE.InsStack open Vale.PPC64LE.QuickCode open Vale.PPC64LE.QuickCodes open Vale.AES.Types_helpers #reset-options "--z3rlimit 30" let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_word alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_word alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ reverse_bytes_quad32_seq (s128 heap0 keys_b) == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE #Vale.Def.Words_s.nat32 (FStar.Seq.Base.create #quad32 1 (va_get_vec 1 va_sM))) == Vale.AES.GCTR_BE_s.gctr_encrypt (va_get_vec 7 va_sM) (Vale.Arch.Types.be_quad32_to_bytes (va_get_vec 1 va_s0)) alg key /\ va_get_vec 1 va_sM == Vale.AES.GCTR_BE_s.gctr_encrypt_block (va_get_vec 7 va_sM) (va_get_vec 1 va_s0) alg key 0) /\ va_state_eq va_sM (va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0 va_sM (va_update_reg 10 va_sM (va_update_ok va_sM va_s0))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ (forall (va_x_r10:nat64) (va_x_v0:quad32) (va_x_v1:quad32) (va_x_v2:quad32) . let va_sM = va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 10 va_x_r10 va_s0))) in va_get_ok va_sM /\ (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE #Vale.Def.Words_s.nat32 (FStar.Seq.Base.create #quad32 1 (va_get_vec 1 va_sM))) == Vale.AES.GCTR_BE_s.gctr_encrypt (va_get_vec 7 va_sM) (Vale.Arch.Types.be_quad32_to_bytes (va_get_vec 1 va_s0)) alg key /\ va_get_vec 1 va_sM == Vale.AES.GCTR_BE_s.gctr_encrypt_block (va_get_vec 7 va_sM) (va_get_vec 1 va_s0) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 10]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 10]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ ((Vale.PPC64LE.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.PPC64LE.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 3 va_s0) in_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 7 va_s0) out_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg 3 va_s0 + 16 `op_Multiply` va_get_reg 6 va_s0 < pow2_64 /\ va_get_reg 7 va_s0 + 16 `op_Multiply` va_get_reg 6 va_s0 < pow2_64 /\ l_and (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 out_b) (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b < pow2_32) /\ va_get_reg 6 va_s0 == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b /\ va_get_reg 6 va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.PPC64LE.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR_BE.gctr_partial alg (va_get_reg 6 va_s0) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b)) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b)) key (va_get_vec 7 va_s0) /\ va_get_vec 7 va_sM == Vale.AES.GCTR_BE.inc32lite (va_get_vec 7 va_s0) (va_get_reg 6 va_s0) /\ (va_get_reg 6 va_s0 == 0 ==> Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b) /\ l_and (l_and (va_get_reg 3 va_sM == va_get_reg 3 va_s0) (va_get_reg 7 va_sM == va_get_reg 7 va_s0)) (va_get_reg 6 va_sM == va_get_reg 6 va_s0)) /\ va_state_eq va_sM (va_update_mem_heaplet 1 va_sM (va_update_cr0 va_sM (va_update_vec 19 va_sM (va_update_vec 18 va_sM (va_update_vec 17 va_sM (va_update_vec 16 va_sM (va_update_vec 15 va_sM (va_update_vec 14 va_sM (va_update_vec 13 va_sM (va_update_vec 12 va_sM (va_update_vec 11 va_sM (va_update_vec 10 va_sM (va_update_vec 9 va_sM (va_update_vec 8 va_sM (va_update_vec 7 va_sM (va_update_vec 6 va_sM (va_update_vec 5 va_sM (va_update_vec 4 va_sM (va_update_vec 3 va_sM (va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0 va_sM (va_update_reg 31 va_sM (va_update_reg 30 va_sM (va_update_reg 29 va_sM (va_update_reg 28 va_sM (va_update_reg 27 va_sM (va_update_reg 26 va_sM (va_update_reg 10 va_sM (va_update_reg 9 va_sM (va_update_reg 8 va_sM (va_update_reg 6 va_sM (va_update_reg 7 va_sM (va_update_reg 3 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))))))))))))))))))))))
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.QuickCodes.fsti.checked", "Vale.PPC64LE.QuickCode.fst.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.InsVector.fsti.checked", "Vale.PPC64LE.InsStack.fsti.checked", "Vale.PPC64LE.InsMem.fsti.checked", "Vale.PPC64LE.InsBasic.fsti.checked", "Vale.PPC64LE.Decls.fsti.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.PPC64LE.AES.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.PPC64LE.GCTR.fsti" }
[ { "abbrev": false, "full_module": "Vale.Lib.Basic", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> in_b: Vale.PPC64LE.Memory.buffer128 -> out_b: Vale.PPC64LE.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.PPC64LE.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.PPC64LE.Memory.quad32 -> keys_b: Vale.PPC64LE.Memory.buffer128 -> va_s0: Vale.PPC64LE.Decls.va_state -> va_k: (_: Vale.PPC64LE.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "Vale.PPC64LE.Memory.buffer128", "FStar.Seq.Base.seq", "Vale.PPC64LE.Memory.nat32", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.PPC64LE.Decls.va_get_ok", "Prims.l_or", "Vale.PPC64LE.Decls.buffers_disjoint128", "Prims.eq2", "Vale.PPC64LE.Decls.validSrcAddrs128", "Vale.PPC64LE.Decls.va_get_mem_heaplet", "Vale.PPC64LE.Decls.va_get_reg", "Vale.PPC64LE.Decls.va_get_mem_layout", "Vale.Arch.HeapTypes_s.Secret", "Vale.PPC64LE.Decls.validDstAddrs128", "Prims.op_LessThan", "Prims.op_Addition", "Prims.op_Multiply", "Vale.PPC64LE.Machine_s.pow2_64", "Prims.nat", "Vale.PPC64LE.Decls.buffer_length", "Vale.PPC64LE.Memory.vuint128", "Vale.PPC64LE.Machine_s.pow2_32", "Vale.AES.PPC64LE.GCTR.aes_reqs", "Prims.l_Forall", "Vale.PPC64LE.InsBasic.vale_heap", "Vale.PPC64LE.Memory.nat64", "Vale.PPC64LE.Machine_s.cr0_t", "Prims.l_imp", "Vale.PPC64LE.Decls.modifies_buffer128", "Vale.AES.GCTR_BE.gctr_partial", "Vale.Arch.Types.reverse_bytes_quad32_seq", "Vale.PPC64LE.Decls.s128", "Vale.PPC64LE.Decls.va_get_vec", "Vale.Def.Types_s.quad32", "Vale.AES.GCTR_BE.inc32lite", "Prims.int", "Vale.PPC64LE.Machine_s.quad32", "Vale.PPC64LE.Machine_s.nat64", "Vale.PPC64LE.Machine_s.state", "Vale.PPC64LE.Decls.va_upd_mem_heaplet", "Vale.PPC64LE.Decls.va_upd_cr0", "Vale.PPC64LE.Decls.va_upd_vec", "Vale.PPC64LE.Decls.va_upd_reg", "Vale.PPC64LE.Decls.va_upd_mem" ]
[]
false
false
false
true
true
let va_wp_Gctr_blocks128 (alg: algorithm) (in_b out_b: buffer128) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ ((Vale.PPC64LE.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.PPC64LE.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 3 va_s0) in_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 7 va_s0) out_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg 3 va_s0 + 16 `op_Multiply` (va_get_reg 6 va_s0) < pow2_64 /\ va_get_reg 7 va_s0 + 16 `op_Multiply` (va_get_reg 6 va_s0) < pow2_64 /\ l_and (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 out_b) (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b < pow2_32) /\ va_get_reg 6 va_s0 == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b /\ va_get_reg 6 va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_mem: vale_heap) (va_x_r3: nat64) (va_x_r7: nat64) (va_x_r6: nat64) (va_x_r8: nat64) (va_x_r9: nat64) (va_x_r10: nat64) (va_x_r26: nat64) (va_x_r27: nat64) (va_x_r28: nat64) (va_x_r29: nat64) (va_x_r30: nat64) (va_x_r31: nat64) (va_x_v0: quad32) (va_x_v1: quad32) (va_x_v2: quad32) (va_x_v3: quad32) (va_x_v4: quad32) (va_x_v5: quad32) (va_x_v6: quad32) (va_x_v7: quad32) (va_x_v8: quad32) (va_x_v9: quad32) (va_x_v10: quad32) (va_x_v11: quad32) (va_x_v12: quad32) (va_x_v13: quad32) (va_x_v14: quad32) (va_x_v15: quad32) (va_x_v16: quad32) (va_x_v17: quad32) (va_x_v18: quad32) (va_x_v19: quad32) (va_x_cr0: cr0_t) (va_x_heap1: vale_heap). let va_sM = va_upd_mem_heaplet 1 va_x_heap1 (va_upd_cr0 va_x_cr0 (va_upd_vec 19 va_x_v19 (va_upd_vec 18 va_x_v18 (va_upd_vec 17 va_x_v17 (va_upd_vec 16 va_x_v16 (va_upd_vec 15 va_x_v15 (va_upd_vec 14 va_x_v14 (va_upd_vec 13 va_x_v13 (va_upd_vec 12 va_x_v12 (va_upd_vec 11 va_x_v11 (va_upd_vec 10 va_x_v10 (va_upd_vec 9 va_x_v9 (va_upd_vec 8 va_x_v8 (va_upd_vec 7 va_x_v7 (va_upd_vec 6 va_x_v6 (va_upd_vec 5 va_x_v5 (va_upd_vec 4 va_x_v4 (va_upd_vec 3 va_x_v3 (va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 31 va_x_r31 (va_upd_reg 30 va_x_r30 ( va_upd_reg 29 va_x_r29 ( va_upd_reg 28 va_x_r28 ( va_upd_reg 27 va_x_r27 ( va_upd_reg 26 va_x_r26 ( va_upd_reg 10 va_x_r10 ( va_upd_reg 9 va_x_r9 ( va_upd_reg 8 va_x_r8 ( va_upd_reg 6 va_x_r6 ( va_upd_reg 7 va_x_r7 ( va_upd_reg 3 va_x_r3 ( va_upd_mem va_x_mem va_s0 ) ) ) ) ) ) ) ) ) ) ) )) )))))))))) ))))))))))) in va_get_ok va_sM /\ (Vale.PPC64LE.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR_BE.gctr_partial alg (va_get_reg 6 va_s0) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b)) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b)) key (va_get_vec 7 va_s0) /\ va_get_vec 7 va_sM == Vale.AES.GCTR_BE.inc32lite (va_get_vec 7 va_s0) (va_get_reg 6 va_s0) /\ (va_get_reg 6 va_s0 == 0 ==> Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b) /\ l_and (l_and (va_get_reg 3 va_sM == va_get_reg 3 va_s0) (va_get_reg 7 va_sM == va_get_reg 7 va_s0)) (va_get_reg 6 va_sM == va_get_reg 6 va_s0)) ==> va_k va_sM (())))
false
Steel.Effect.fst
Steel.Effect.to_post
val to_post : post: Steel.Effect.Common.post_t a -> x: a -> Steel.Memory.slprop
let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x))
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 65, "end_line": 61, "start_col": 0, "start_line": 61 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
post: Steel.Effect.Common.post_t a -> x: a -> Steel.Memory.slprop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.post_t", "Steel.Effect.Common.hp_of", "Steel.Memory.slprop" ]
[]
false
false
false
true
false
let to_post (#a: Type) (post: post_t a) =
fun x -> (hp_of (post x))
false
Steel.Effect.fst
Steel.Effect.repr
val repr (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) : Type u#2
val repr (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) : Type u#2
let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens))
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 26, "end_line": 157, "start_col": 0, "start_line": 154 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> framed: Prims.bool -> pre: Steel.Effect.Common.pre_t -> post: Steel.Effect.Common.post_t a -> req: Steel.Effect.Common.req_t pre -> ens: Steel.Effect.Common.ens_t pre a post -> Type
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Semantics.Hoare.MST.action_t", "Steel.Semantics.Instantiate.state", "Steel.Effect.Common.hp_of", "Steel.Effect.to_post", "Steel.Effect.req_to_act_req", "Steel.Effect.ens_to_act_ens" ]
[]
false
false
false
false
true
let repr (a: Type) (_: bool) (pre: pre_t) (post: post_t a) (req: req_t pre) (ens: ens_t pre a post) =
Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens))
false
Steel.Effect.fst
Steel.Effect.frame_opaque
val frame_opaque : frame: Steel.Effect.Common.vprop -> h0: Steel.Effect.Common.rmem frame -> h1: Steel.Effect.Common.rmem frame -> Prims.prop
let frame_opaque frame h0 h1 = frame_equalities frame h0 h1
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 59, "end_line": 197, "start_col": 0, "start_line": 197 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
frame: Steel.Effect.Common.vprop -> h0: Steel.Effect.Common.rmem frame -> h1: Steel.Effect.Common.rmem frame -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Steel.Effect.Common.frame_equalities", "Prims.prop" ]
[]
false
false
false
false
true
let frame_opaque frame h0 h1 =
frame_equalities frame h0 h1
false
Steel.Effect.fst
Steel.Effect.norm_opaque
val norm_opaque : x: _ -> _
let norm_opaque = norm [delta_only [`%frame_opaque]]
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 52, "end_line": 200, "start_col": 0, "start_line": 200 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: _ -> _
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil" ]
[]
false
false
false
true
false
let norm_opaque =
norm [delta_only [`%frame_opaque]]
false
Steel.Effect.fst
Steel.Effect.bind_div_steel_req
val bind_div_steel_req (#a: Type) (wp: pure_wp a) (#pre_g: pre_t) (req_g: (a -> req_t pre_g)) : req_t pre_g
val bind_div_steel_req (#a: Type) (wp: pure_wp a) (#pre_g: pre_t) (req_g: (a -> req_t pre_g)) : req_t pre_g
let bind_div_steel_req (#a:Type) (wp:pure_wp a) (#pre_g:pre_t) (req_g:a -> req_t pre_g) : req_t pre_g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun h -> wp (fun _ -> True) /\ (forall x. (req_g x) h)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 56, "end_line": 644, "start_col": 0, "start_line": 640 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) unfold let subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (_:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : pure_pre = (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) val subcomp_opaque (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #_ #p1 #p2 f = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant Set.empty m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1 = nmst_get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant Set.empty m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x #pop-options let lemma_rewrite (p:Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p) = T.unfold_rewrite_with_tactic vc_norm p let lemma_norm_opaque (p:Type) : Lemma (requires norm_opaque p) (ensures p) = () (** Need to manually remove the rewrite_with_tactic marker here *) let lemma_subcomp_pre_opaque_aux1 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) = lemma_rewrite (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) #push-options "--no_tactics" let lemma_subcomp_pre_opaque_aux2 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_norm_opaque (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) let lemma_subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr : prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_subcomp_pre_opaque_aux1 req_f ens_f req_g ens_g p1 p2; lemma_subcomp_pre_opaque_aux2 req_f ens_f req_g ens_g p1 p2 #pop-options let subcomp a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f let bind_pure_steel_ a b #wp #pre #post #req #ens f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame (* We need a bind with DIV to implement par, using reification *)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
wp: Prims.pure_wp a -> req_g: (_: a -> Steel.Effect.Common.req_t pre_g) -> Steel.Effect.Common.req_t pre_g
Prims.Tot
[ "total" ]
[]
[ "Prims.pure_wp", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.rmem", "Prims.l_and", "Prims.l_True", "Prims.l_Forall", "Prims.unit", "FStar.Monotonic.Pure.elim_pure_wp_monotonicity" ]
[]
false
false
false
false
false
let bind_div_steel_req (#a: Type) (wp: pure_wp a) (#pre_g: pre_t) (req_g: (a -> req_t pre_g)) : req_t pre_g =
FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun h -> wp (fun _ -> True) /\ (forall x. (req_g x) h)
false
Steel.Effect.fst
Steel.Effect.bind_div_steel_ens
val bind_div_steel_ens (#a #b: Type) (wp: pure_wp a) (#pre_g: pre_t) (#post_g: post_t b) (ens_g: (a -> ens_t pre_g b post_g)) : ens_t pre_g b post_g
val bind_div_steel_ens (#a #b: Type) (wp: pure_wp a) (#pre_g: pre_t) (#post_g: post_t b) (ens_g: (a -> ens_t pre_g b post_g)) : ens_t pre_g b post_g
let bind_div_steel_ens (#a:Type) (#b:Type) (wp:pure_wp a) (#pre_g:pre_t) (#post_g:post_t b) (ens_g:a -> ens_t pre_g b post_g) : ens_t pre_g b post_g = fun h0 r h1 -> wp (fun _ -> True) /\ (exists x. ens_g x h0 r h1)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 66, "end_line": 651, "start_col": 0, "start_line": 647 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) unfold let subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (_:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : pure_pre = (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) val subcomp_opaque (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #_ #p1 #p2 f = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant Set.empty m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1 = nmst_get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant Set.empty m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x #pop-options let lemma_rewrite (p:Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p) = T.unfold_rewrite_with_tactic vc_norm p let lemma_norm_opaque (p:Type) : Lemma (requires norm_opaque p) (ensures p) = () (** Need to manually remove the rewrite_with_tactic marker here *) let lemma_subcomp_pre_opaque_aux1 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) = lemma_rewrite (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) #push-options "--no_tactics" let lemma_subcomp_pre_opaque_aux2 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_norm_opaque (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) let lemma_subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr : prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_subcomp_pre_opaque_aux1 req_f ens_f req_g ens_g p1 p2; lemma_subcomp_pre_opaque_aux2 req_f ens_f req_g ens_g p1 p2 #pop-options let subcomp a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f let bind_pure_steel_ a b #wp #pre #post #req #ens f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame (* We need a bind with DIV to implement par, using reification *) unfold let bind_div_steel_req (#a:Type) (wp:pure_wp a) (#pre_g:pre_t) (req_g:a -> req_t pre_g) : req_t pre_g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun h -> wp (fun _ -> True) /\ (forall x. (req_g x) h)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
wp: Prims.pure_wp a -> ens_g: (_: a -> Steel.Effect.Common.ens_t pre_g b post_g) -> Steel.Effect.Common.ens_t pre_g b post_g
Prims.Tot
[ "total" ]
[]
[ "Prims.pure_wp", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Common.rmem", "Prims.l_and", "Prims.l_True", "Prims.l_Exists" ]
[]
false
false
false
false
false
let bind_div_steel_ens (#a #b: Type) (wp: pure_wp a) (#pre_g: pre_t) (#post_g: post_t b) (ens_g: (a -> ens_t pre_g b post_g)) : ens_t pre_g b post_g =
fun h0 r h1 -> wp (fun _ -> True) /\ (exists x. ens_g x h0 r h1)
false
Vale.AES.PPC64LE.GCTR.fsti
Vale.AES.PPC64LE.GCTR.va_wp_Gctr_register
val va_wp_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ (forall (va_x_r10:nat64) (va_x_v0:quad32) (va_x_v1:quad32) (va_x_v2:quad32) . let va_sM = va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 10 va_x_r10 va_s0))) in va_get_ok va_sM /\ (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE #Vale.Def.Words_s.nat32 (FStar.Seq.Base.create #quad32 1 (va_get_vec 1 va_sM))) == Vale.AES.GCTR_BE_s.gctr_encrypt (va_get_vec 7 va_sM) (Vale.Arch.Types.be_quad32_to_bytes (va_get_vec 1 va_s0)) alg key /\ va_get_vec 1 va_sM == Vale.AES.GCTR_BE_s.gctr_encrypt_block (va_get_vec 7 va_sM) (va_get_vec 1 va_s0) alg key 0) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.PPC64LE.GCTR.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 69, "start_col": 0, "start_line": 59 }
module Vale.AES.PPC64LE.GCTR open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open FStar.Seq open Vale.AES.AES_BE_s open Vale.AES.PPC64LE.AES open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GCM_helpers_BE open Vale.Poly1305.Math open Vale.Def.Words.Two_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.Memory open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Vale.PPC64LE.InsBasic open Vale.PPC64LE.InsMem open Vale.PPC64LE.InsVector open Vale.PPC64LE.InsStack open Vale.PPC64LE.QuickCode open Vale.PPC64LE.QuickCodes open Vale.AES.Types_helpers #reset-options "--z3rlimit 30" let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_word alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_word alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ reverse_bytes_quad32_seq (s128 heap0 keys_b) == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE #Vale.Def.Words_s.nat32 (FStar.Seq.Base.create #quad32 1 (va_get_vec 1 va_sM))) == Vale.AES.GCTR_BE_s.gctr_encrypt (va_get_vec 7 va_sM) (Vale.Arch.Types.be_quad32_to_bytes (va_get_vec 1 va_s0)) alg key /\ va_get_vec 1 va_sM == Vale.AES.GCTR_BE_s.gctr_encrypt_block (va_get_vec 7 va_sM) (va_get_vec 1 va_s0) alg key 0) /\ va_state_eq va_sM (va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0 va_sM (va_update_reg 10 va_sM (va_update_ok va_sM va_s0)))))))
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.QuickCodes.fsti.checked", "Vale.PPC64LE.QuickCode.fst.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.InsVector.fsti.checked", "Vale.PPC64LE.InsStack.fsti.checked", "Vale.PPC64LE.InsMem.fsti.checked", "Vale.PPC64LE.InsBasic.fsti.checked", "Vale.PPC64LE.Decls.fsti.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.PPC64LE.AES.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.PPC64LE.GCTR.fsti" }
[ { "abbrev": false, "full_module": "Vale.Lib.Basic", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.PPC64LE.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.PPC64LE.Memory.quad32 -> keys_b: Vale.PPC64LE.Memory.buffer128 -> va_s0: Vale.PPC64LE.Decls.va_state -> va_k: (_: Vale.PPC64LE.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.PPC64LE.Memory.nat32", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.PPC64LE.Decls.va_get_ok", "Vale.AES.PPC64LE.GCTR.aes_reqs", "Vale.PPC64LE.Decls.va_get_reg", "Vale.PPC64LE.Decls.va_get_mem_heaplet", "Vale.PPC64LE.Decls.va_get_mem_layout", "Prims.l_Forall", "Vale.PPC64LE.Memory.nat64", "Prims.l_imp", "Prims.eq2", "Vale.Def.Words_s.nat8", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Words_s.nat32", "FStar.Seq.Base.create", "Vale.PPC64LE.Decls.va_get_vec", "Vale.AES.GCTR_BE_s.gctr_encrypt", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.Def.Types_s.quad32", "Vale.AES.GCTR_BE_s.gctr_encrypt_block", "Vale.PPC64LE.Machine_s.state", "Vale.PPC64LE.Decls.va_upd_vec", "Vale.PPC64LE.Decls.va_upd_reg" ]
[]
false
false
false
true
true
let va_wp_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ (forall (va_x_r10: nat64) (va_x_v0: quad32) (va_x_v1: quad32) (va_x_v2: quad32). let va_sM = va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 10 va_x_r10 va_s0))) in va_get_ok va_sM /\ (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE #Vale.Def.Words_s.nat32 (FStar.Seq.Base.create #quad32 1 (va_get_vec 1 va_sM))) == Vale.AES.GCTR_BE_s.gctr_encrypt (va_get_vec 7 va_sM) (Vale.Arch.Types.be_quad32_to_bytes (va_get_vec 1 va_s0)) alg key /\ va_get_vec 1 va_sM == Vale.AES.GCTR_BE_s.gctr_encrypt_block (va_get_vec 7 va_sM) (va_get_vec 1 va_s0) alg key 0) ==> va_k va_sM (())))
false
Steel.Effect.fst
Steel.Effect.req_to_act_req
val req_to_act_req (#pre: pre_t) (req: req_t pre) : Sem.l_pre #state (hp_of pre)
val req_to_act_req (#pre: pre_t) (req: req_t pre) : Sem.l_pre #state (hp_of pre)
let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 57, "end_line": 58, "start_col": 0, "start_line": 56 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
req: Steel.Effect.Common.req_t pre -> Steel.Semantics.Hoare.MST.l_pre (Steel.Effect.Common.hp_of pre)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.req_t", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__mem", "Steel.Semantics.Instantiate.state", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.mk_rmem", "Prims.prop", "Prims.unit", "Steel.Effect.rmem_depends_only_on", "Steel.Semantics.Hoare.MST.l_pre" ]
[]
false
false
false
false
false
let req_to_act_req (#pre: pre_t) (req: req_t pre) : Sem.l_pre #state (hp_of pre) =
rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0)
false
Steel.Effect.fst
Steel.Effect.rmem_depends_only_on_post'
val rmem_depends_only_on_post' (#a: Type) (post: post_t a) (x: a) (m0: hmem (post x)) (m1: mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1))
val rmem_depends_only_on_post' (#a: Type) (post: post_t a) (x: a) (m0: hmem (post x)) (m1: mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1))
let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 40, "end_line": 48, "start_col": 0, "start_line": 45 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
post: Steel.Effect.Common.post_t a -> x: a -> m0: Steel.Effect.Common.hmem (post x) -> m1: Steel.Memory.mem{Steel.Memory.disjoint m0 m1} -> FStar.Pervasives.Lemma (ensures Steel.Effect.Common.mk_rmem (post x) m0 == Steel.Effect.Common.mk_rmem (post x) (Steel.Memory.join m0 m1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.post_t", "Steel.Effect.Common.hmem", "Steel.Memory.mem", "Steel.Memory.disjoint", "Steel.Effect.rmem_depends_only_on'", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Steel.Effect.Common.rmem", "Steel.Effect.Common.mk_rmem", "Steel.Memory.join", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let rmem_depends_only_on_post' (#a: Type) (post: post_t a) (x: a) (m0: hmem (post x)) (m1: mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) =
rmem_depends_only_on' (post x) m0 m1
false
Steel.Effect.fst
Steel.Effect.nmst_get
val nmst_get: #st: Sem.st -> Prims.unit -> Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1)
val nmst_get: #st: Sem.st -> Prims.unit -> Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1)
let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get ()
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 15, "end_line": 163, "start_col": 0, "start_line": 159 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens))
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Steel.Semantics.Hoare.MST.Mst (Steel.Semantics.Hoare.MST.full_mem st)
Steel.Semantics.Hoare.MST.Mst
[]
[]
[ "Steel.Semantics.Hoare.MST.st", "Prims.unit", "FStar.NMST.get", "Steel.Semantics.Hoare.MST.full_mem", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__locks_preorder", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__mem", "Prims.l_True", "Prims.l_and", "Prims.eq2" ]
[]
false
true
false
false
false
let nmst_get (#st: Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) =
NMST.get ()
false
Vale.AES.PPC64LE.GCTR.fsti
Vale.AES.PPC64LE.GCTR.va_quick_Gctr_register
val va_quick_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_register alg))
val va_quick_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_register alg))
let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 10]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b))
{ "file_name": "obj/Vale.AES.PPC64LE.GCTR.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 12, "end_line": 82, "start_col": 0, "start_line": 78 }
module Vale.AES.PPC64LE.GCTR open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open FStar.Seq open Vale.AES.AES_BE_s open Vale.AES.PPC64LE.AES open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GCM_helpers_BE open Vale.Poly1305.Math open Vale.Def.Words.Two_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.Memory open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Vale.PPC64LE.InsBasic open Vale.PPC64LE.InsMem open Vale.PPC64LE.InsVector open Vale.PPC64LE.InsStack open Vale.PPC64LE.QuickCode open Vale.PPC64LE.QuickCodes open Vale.AES.Types_helpers #reset-options "--z3rlimit 30" let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_word alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_word alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ reverse_bytes_quad32_seq (s128 heap0 keys_b) == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE #Vale.Def.Words_s.nat32 (FStar.Seq.Base.create #quad32 1 (va_get_vec 1 va_sM))) == Vale.AES.GCTR_BE_s.gctr_encrypt (va_get_vec 7 va_sM) (Vale.Arch.Types.be_quad32_to_bytes (va_get_vec 1 va_s0)) alg key /\ va_get_vec 1 va_sM == Vale.AES.GCTR_BE_s.gctr_encrypt_block (va_get_vec 7 va_sM) (va_get_vec 1 va_s0) alg key 0) /\ va_state_eq va_sM (va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0 va_sM (va_update_reg 10 va_sM (va_update_ok va_sM va_s0))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ (forall (va_x_r10:nat64) (va_x_v0:quad32) (va_x_v1:quad32) (va_x_v2:quad32) . let va_sM = va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 10 va_x_r10 va_s0))) in va_get_ok va_sM /\ (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE #Vale.Def.Words_s.nat32 (FStar.Seq.Base.create #quad32 1 (va_get_vec 1 va_sM))) == Vale.AES.GCTR_BE_s.gctr_encrypt (va_get_vec 7 va_sM) (Vale.Arch.Types.be_quad32_to_bytes (va_get_vec 1 va_s0)) alg key /\ va_get_vec 1 va_sM == Vale.AES.GCTR_BE_s.gctr_encrypt_block (va_get_vec 7 va_sM) (va_get_vec 1 va_s0) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 10]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.QuickCodes.fsti.checked", "Vale.PPC64LE.QuickCode.fst.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.InsVector.fsti.checked", "Vale.PPC64LE.InsStack.fsti.checked", "Vale.PPC64LE.InsMem.fsti.checked", "Vale.PPC64LE.InsBasic.fsti.checked", "Vale.PPC64LE.Decls.fsti.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.PPC64LE.AES.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.PPC64LE.GCTR.fsti" }
[ { "abbrev": false, "full_module": "Vale.Lib.Basic", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.PPC64LE.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.PPC64LE.Memory.quad32 -> keys_b: Vale.PPC64LE.Memory.buffer128 -> Vale.PPC64LE.QuickCode.va_quickCode Prims.unit (Vale.AES.PPC64LE.GCTR.va_code_Gctr_register alg)
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.PPC64LE.Memory.nat32", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.QuickCode.va_QProc", "Prims.unit", "Vale.AES.PPC64LE.GCTR.va_code_Gctr_register", "Prims.Cons", "Vale.PPC64LE.QuickCode.mod_t", "Vale.PPC64LE.QuickCode.va_Mod_vec", "Vale.PPC64LE.QuickCode.va_Mod_reg", "Prims.Nil", "Vale.AES.PPC64LE.GCTR.va_wp_Gctr_register", "Vale.AES.PPC64LE.GCTR.va_wpProof_Gctr_register", "Vale.PPC64LE.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) =
(va_QProc (va_code_Gctr_register alg) ([va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 10]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b))
false
Steel.Effect.fst
Steel.Effect.can_be_split_3_interp
val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m)
val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m)
let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 52, "end_line": 152, "start_col": 0, "start_line": 149 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: Steel.Memory.slprop -> p2: Steel.Memory.slprop -> q: Steel.Memory.slprop -> r: Steel.Memory.slprop -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.slimp p1 p2 /\ Steel.Memory.interp (Steel.Memory.star (Steel.Memory.star p1 q) r) m) (ensures Steel.Memory.interp (Steel.Memory.star (Steel.Memory.star p2 q) r) m)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Memory.slprop", "Steel.Memory.mem", "Steel.Memory.slimp_star", "Steel.Memory.star", "Prims.unit", "Steel.Memory.star_associative" ]
[]
true
false
true
false
false
let can_be_split_3_interp p1 p2 q r m =
Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r)
false
Steel.Effect.fst
Steel.Effect.rmem_depends_only_on_post
val rmem_depends_only_on_post (#a: Type) (post: post_t a) : Lemma (forall (x: a) (m0: hmem (post x)) (m1: mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1))
val rmem_depends_only_on_post (#a: Type) (post: post_t a) : Lemma (forall (x: a) (m0: hmem (post x)) (m1: mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1))
let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 62, "end_line": 53, "start_col": 0, "start_line": 50 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
post: Steel.Effect.Common.post_t a -> FStar.Pervasives.Lemma (ensures forall (x: a) (m0: Steel.Effect.Common.hmem (post x)) (m1: Steel.Memory.mem{Steel.Memory.disjoint m0 m1}). Steel.Effect.Common.mk_rmem (post x) m0 == Steel.Effect.Common.mk_rmem (post x) (Steel.Memory.join m0 m1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.post_t", "FStar.Classical.forall_intro_3", "Steel.Effect.Common.hmem", "Steel.Memory.mem", "Steel.Memory.disjoint", "Prims.eq2", "Steel.Effect.Common.rmem", "Steel.Effect.Common.mk_rmem", "Steel.Memory.join", "Steel.Effect.rmem_depends_only_on_post'", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let rmem_depends_only_on_post (#a: Type) (post: post_t a) : Lemma (forall (x: a) (m0: hmem (post x)) (m1: mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) =
Classical.forall_intro_3 (rmem_depends_only_on_post' post)
false
Steel.Effect.fst
Steel.Effect.rmem_depends_only_on'
val rmem_depends_only_on' (pre: pre_t) (m0: hmem pre) (m1: mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1))
val rmem_depends_only_on' (pre: pre_t) (m0: hmem pre) (m1: mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1))
let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1))
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 32, "end_line": 38, "start_col": 0, "start_line": 30 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pre: Steel.Effect.Common.pre_t -> m0: Steel.Effect.Common.hmem pre -> m1: Steel.Memory.mem{Steel.Memory.disjoint m0 m1} -> FStar.Pervasives.Lemma (ensures Steel.Effect.Common.mk_rmem pre m0 == Steel.Effect.Common.mk_rmem pre (Steel.Memory.join m0 m1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.hmem", "Steel.Memory.mem", "Steel.Memory.disjoint", "FStar.FunctionalExtensionality.extensionality_g", "Steel.Effect.Common.vprop", "Steel.Effect.Common.can_be_split", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Steel.Effect.Common.mk_rmem", "Steel.Memory.join", "Prims.unit", "FStar.Classical.forall_intro", "Prims.eq2", "Steel.Effect.Common.sel_of", "Steel.Effect.Common.reveal_mk_rmem", "Prims.l_True", "Prims.squash", "Steel.Effect.Common.rmem", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let rmem_depends_only_on' (pre: pre_t) (m0: hmem pre) (m1: mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) =
Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0: vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1))
false
Vale.AES.PPC64LE.GCTR.fsti
Vale.AES.PPC64LE.GCTR.aes_reqs
val aes_reqs (alg: algorithm) (key: seq nat32) (round_keys: seq quad32) (keys_b: buffer128) (key_ptr: int) (heap0: vale_heap) (layout: vale_heap_layout) : prop0
val aes_reqs (alg: algorithm) (key: seq nat32) (round_keys: seq quad32) (keys_b: buffer128) (key_ptr: int) (heap0: vale_heap) (layout: vale_heap_layout) : prop0
let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_word alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_word alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ reverse_bytes_quad32_seq (s128 heap0 keys_b) == round_keys
{ "file_name": "obj/Vale.AES.PPC64LE.GCTR.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 37, "start_col": 0, "start_line": 28 }
module Vale.AES.PPC64LE.GCTR open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open FStar.Seq open Vale.AES.AES_BE_s open Vale.AES.PPC64LE.AES open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GCM_helpers_BE open Vale.Poly1305.Math open Vale.Def.Words.Two_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.Memory open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Vale.PPC64LE.InsBasic open Vale.PPC64LE.InsMem open Vale.PPC64LE.InsVector open Vale.PPC64LE.InsStack open Vale.PPC64LE.QuickCode open Vale.PPC64LE.QuickCodes open Vale.AES.Types_helpers
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.QuickCodes.fsti.checked", "Vale.PPC64LE.QuickCode.fst.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.InsVector.fsti.checked", "Vale.PPC64LE.InsStack.fsti.checked", "Vale.PPC64LE.InsMem.fsti.checked", "Vale.PPC64LE.InsBasic.fsti.checked", "Vale.PPC64LE.Decls.fsti.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.PPC64LE.AES.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.PPC64LE.GCTR.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.PPC64LE.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.PPC64LE.Memory.quad32 -> keys_b: Vale.PPC64LE.Memory.buffer128 -> key_ptr: Prims.int -> heap0: Vale.PPC64LE.InsBasic.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.PPC64LE.Memory.nat32", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Memory.buffer128", "Prims.int", "Vale.PPC64LE.InsBasic.vale_heap", "Vale.Arch.HeapImpl.vale_heap_layout", "Prims.l_and", "Prims.l_or", "Prims.b2t", "Prims.op_Equality", "Vale.AES.AES_common_s.AES_128", "Vale.AES.AES_common_s.AES_256", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.eq2", "FStar.Seq.Base.length", "Prims.op_Addition", "Vale.AES.AES_common_s.nr", "Vale.Def.Types_s.quad32", "Vale.AES.AES_BE_s.key_to_round_keys_word", "Vale.PPC64LE.Decls.validSrcAddrs128", "Vale.Arch.HeapTypes_s.Secret", "Vale.Arch.Types.reverse_bytes_quad32_seq", "Vale.PPC64LE.Decls.s128", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let aes_reqs (alg: algorithm) (key: seq nat32) (round_keys: seq quad32) (keys_b: buffer128) (key_ptr: int) (heap0: vale_heap) (layout: vale_heap_layout) : prop0 =
(alg = AES_128 \/ alg = AES_256) /\ is_aes_key_word alg key /\ length (round_keys) == nr (alg) + 1 /\ round_keys == key_to_round_keys_word alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ reverse_bytes_quad32_seq (s128 heap0 keys_b) == round_keys
false
Steel.Effect.fst
Steel.Effect.rmem_depends_only_on
val rmem_depends_only_on (pre: pre_t) : Lemma (forall (m0: hmem pre) (m1: mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1))
val rmem_depends_only_on (pre: pre_t) : Lemma (forall (m0: hmem pre) (m1: mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1))
let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 56, "end_line": 43, "start_col": 0, "start_line": 40 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1))
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pre: Steel.Effect.Common.pre_t -> FStar.Pervasives.Lemma (ensures forall (m0: Steel.Effect.Common.hmem pre) (m1: Steel.Memory.mem{Steel.Memory.disjoint m0 m1}). Steel.Effect.Common.mk_rmem pre m0 == Steel.Effect.Common.mk_rmem pre (Steel.Memory.join m0 m1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.pre_t", "FStar.Classical.forall_intro_2", "Steel.Effect.Common.hmem", "Steel.Memory.mem", "Steel.Memory.disjoint", "Prims.eq2", "Steel.Effect.Common.rmem", "Steel.Effect.Common.mk_rmem", "Steel.Memory.join", "Steel.Effect.rmem_depends_only_on'", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let rmem_depends_only_on (pre: pre_t) : Lemma (forall (m0: hmem pre) (m1: mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) =
Classical.forall_intro_2 (rmem_depends_only_on' pre)
false
Steel.Effect.fst
Steel.Effect.focus_is_restrict_mk_rmem
val focus_is_restrict_mk_rmem (fp0 fp1: vprop) (m: hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m)
val focus_is_restrict_mk_rmem (fp0 fp1: vprop) (m: hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m)
let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 38, "end_line": 98, "start_col": 0, "start_line": 78 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
fp0: Steel.Effect.Common.vprop -> fp1: Steel.Effect.Common.vprop -> m: Steel.Effect.Common.hmem fp0 -> FStar.Pervasives.Lemma (requires Steel.Effect.Common.can_be_split fp0 fp1) (ensures Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem fp0 m) fp1 == Steel.Effect.Common.mk_rmem fp1 m)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.hmem", "FStar.FunctionalExtensionality.extensionality_g", "Steel.Effect.Common.can_be_split", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Steel.Effect.Common.mk_rmem", "Steel.Effect.Common.focus_rmem", "Prims.unit", "FStar.Classical.forall_intro", "Prims.eq2", "Prims.l_True", "Prims.squash", "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "FStar.Pervasives.delta_only", "FStar.Pervasives.delta_qualifier", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.primops", "FStar.Pervasives.simplify", "FStar.Pervasives.pattern", "Steel.Effect.reveal_focus_rmem", "Steel.Effect.Common.reveal_mk_rmem", "Steel.Effect.Common.can_be_split_trans", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.rmem" ]
[]
false
false
true
false
false
let focus_is_restrict_mk_rmem (fp0 fp1: vprop) (m: hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) =
let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r: vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0: vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1)
false
Steel.Effect.fst
Steel.Effect.ens_to_act_ens
val ens_to_act_ens (#pre: pre_t) (#a: Type) (#post: post_t a) (ens: ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post)
val ens_to_act_ens (#pre: pre_t) (#a: Type) (#post: post_t a) (ens: ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post)
let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 103, "end_line": 69, "start_col": 0, "start_line": 64 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x))
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ens: Steel.Effect.Common.ens_t pre a post -> Steel.Semantics.Hoare.MST.l_post (Steel.Effect.Common.hp_of pre) (Steel.Effect.to_post post)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.ens_t", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__mem", "Steel.Semantics.Instantiate.state", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.mk_rmem", "Prims.prop", "Prims.unit", "Steel.Effect.rmem_depends_only_on_post", "Steel.Effect.rmem_depends_only_on", "Steel.Semantics.Hoare.MST.l_post", "Steel.Effect.to_post" ]
[]
false
false
false
false
false
let ens_to_act_ens (#pre: pre_t) (#a: Type) (#post: post_t a) (ens: ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) =
rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1)
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_req_Gcm_blocks_stdcall
val va_req_Gcm_blocks_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (plain_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) : prop
val va_req_Gcm_blocks_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (plain_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) : prop
let va_req_Gcm_blocks_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (plain_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : prop = (va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (plain_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 869, "start_col": 0, "start_line": 726 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win)) //-- //-- Restore_registers val va_code_Restore_registers : win:bool -> Tot va_code val va_codegen_success_Restore_registers : win:bool -> Tot va_pbool val va_lemma_Restore_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Restore_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_reg64 rRsp va_sM (va_update_stack va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))))))))))))))))))))) [@ va_qattr] let va_wp_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rbp:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_stack:vale_stack) (va_x_rsp:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0)))))))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (()))) val va_wpProof_Restore_registers : win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15 va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) : (va_quickCode unit (va_code_Restore_registers win)) = (va_QProc (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) (va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15) (va_wpProof_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15)) //-- #reset-options "--z3rlimit 100" //-- Gcm_blocks_stdcall val va_code_Gcm_blocks_stdcall : win:bool -> alg:algorithm -> Tot va_code
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
va_b0: Vale.X64.Decls.va_code -> va_s0: Vale.X64.Decls.va_state -> win: Prims.bool -> alg: Vale.AES.AES_common_s.algorithm -> auth_b: Vale.X64.Memory.buffer128 -> auth_bytes: Vale.X64.Memory.nat64 -> auth_num: Vale.X64.Memory.nat64 -> keys_b: Vale.X64.Memory.buffer128 -> iv_b: Vale.X64.Memory.buffer128 -> iv: Vale.AES.GCM_s.supported_iv_LE -> hkeys_b: Vale.X64.Memory.buffer128 -> abytes_b: Vale.X64.Memory.buffer128 -> in128x6_b: Vale.X64.Memory.buffer128 -> out128x6_b: Vale.X64.Memory.buffer128 -> len128x6_num: Vale.X64.Memory.nat64 -> in128_b: Vale.X64.Memory.buffer128 -> out128_b: Vale.X64.Memory.buffer128 -> len128_num: Vale.X64.Memory.nat64 -> inout_b: Vale.X64.Memory.buffer128 -> plain_num: Vale.X64.Memory.nat64 -> scratch_b: Vale.X64.Memory.buffer128 -> tag_b: Vale.X64.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Decls.va_code", "Vale.X64.Decls.va_state", "Prims.bool", "Vale.AES.AES_common_s.algorithm", "Vale.X64.Memory.buffer128", "Vale.X64.Memory.nat64", "Vale.AES.GCM_s.supported_iv_LE", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Prims.l_and", "Vale.X64.Decls.va_require_total", "Vale.AES.X64.GCMencryptOpt.va_code_Gcm_blocks_stdcall", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.aesni_enabled", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.X64.CPU_Features_s.movbe_enabled", "Prims.eq2", "Vale.Def.Words_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRsp", "Vale.X64.Stack_i.init_rsp", "Vale.X64.Decls.va_get_stack", "Vale.X64.Memory.is_initial_heap", "Vale.X64.Decls.va_get_mem_layout", "Vale.X64.Decls.va_get_mem", "Prims.l_imp", "Prims.l_not", "Vale.X64.Stack_i.valid_stack_slot64", "Prims.op_Addition", "Vale.Arch.HeapTypes_s.Public", "Vale.X64.Decls.va_get_stackTaint", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Vale.Def.Words_s.pow2_64", "Prims.op_LessThanOrEqual", "Vale.X64.Decls.validSrcAddrs128", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.validDstAddrs128", "Vale.X64.Decls.buffer_disjoints128", "Prims.Cons", "Prims.Nil", "Vale.X64.Decls.buffers_disjoint128", "Prims.op_Multiply", "Vale.X64.Machine_s.pow2_64", "Vale.X64.Decls.buffer_length", "Vale.X64.Memory.vuint128", "Prims.nat", "Vale.X64.Machine_s.pow2_32", "Vale.X64.Memory.buffer_addr", "Prims.op_Modulus", "Prims.op_GreaterThan", "Vale.X64.Decls.va_mul_nat", "Prims.op_Division", "Prims.op_Equality", "Vale.AES.AES_common_s.AES_128", "Vale.AES.AES_common_s.AES_256", "Vale.AES.AES_s.is_aes_key_LE", "Vale.Def.Types_s.quad32", "Vale.X64.Decls.buffer128_as_seq", "Vale.AES.AES_s.key_to_round_keys_LE", "Vale.AES.AES_common_s.nr", "Vale.AES.OptPublic.hkeys_reqs_pub", "Vale.X64.Decls.s128", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.AES.AES_s.aes_encrypt_LE", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Vale.AES.GCM_s.compute_iv_BE", "Vale.X64.Decls.buffer128_read", "Vale.X64.Decls.va_int_range", "Vale.X64.Stack_i.load_stack64", "Vale.X64.Machine_s.rR9", "Vale.X64.Machine_s.rR8", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRdi", "Prims.prop" ]
[]
false
false
false
true
true
let va_req_Gcm_blocks_stdcall (va_b0: va_code) (va_s0: va_state) (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (plain_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) : prop =
(va_require_total va_b0 (va_code_Gcm_blocks_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let auth_ptr:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let auth_num_bytes:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let auth_len:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let keys_ptr:(va_int_range 0 18446744073709551615) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let iv_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let xip:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let abytes_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let in128x6_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let out128x6_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let len128x6:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let in128_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let out128_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let len128:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let inout_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let plain_num_bytes:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let scratch_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let tag_ptr:(va_int_range 0 18446744073709551615) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ plain_num_bytes == plain_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([ keys_b; auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b ]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([ keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b ]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ plain_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 18) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= plain_num_bytes /\ plain_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) keys_ptr keys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)))
false
Steel.Effect.fst
Steel.Effect.bind_req_opaque
val bind_req_opaque: #a: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: (a -> pre_t) -> #pr: (a -> prop) -> req_g: (x: a -> req_t (pre_g x)) -> frame_f: vprop -> frame_g: (a -> vprop) -> squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x))) -> req_t (pre_f `star` frame_f)
val bind_req_opaque: #a: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: (a -> pre_t) -> #pr: (a -> prop) -> req_g: (x: a -> req_t (pre_g x)) -> frame_f: vprop -> frame_g: (a -> vprop) -> squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x))) -> req_t (pre_f `star` frame_f)
let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x))))
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 79, "end_line": 280, "start_col": 0, "start_line": 264 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
req_f: Steel.Effect.Common.req_t pre_f -> ens_f: Steel.Effect.Common.ens_t pre_f a post_f -> req_g: (x: a -> Steel.Effect.Common.req_t (pre_g x)) -> frame_f: Steel.Effect.Common.vprop -> frame_g: (_: a -> Steel.Effect.Common.vprop) -> _: Prims.squash (Steel.Effect.Common.can_be_split_forall_dep pr (fun x -> Steel.Effect.Common.star (post_f x) frame_f) (fun x -> Steel.Effect.Common.star (pre_g x) (frame_g x))) -> Steel.Effect.Common.req_t (Steel.Effect.Common.star pre_f frame_f)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Prims.prop", "Steel.Effect.Common.vprop", "Prims.squash", "Steel.Effect.Common.can_be_split_forall_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.rmem", "Prims.l_and", "Steel.Effect.Common.focus_rmem", "Prims.l_Forall", "Steel.Effect.Common.hmem", "Prims.l_imp", "Steel.Effect.Common.mk_rmem", "Steel.Effect.frame_opaque", "Prims.unit", "Steel.Effect.Common.can_be_split_trans" ]
[]
false
false
false
false
false
let bind_req_opaque (#a: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: (a -> pre_t)) (#pr: (a -> prop)) (req_g: (x: a -> req_t (pre_g x))) (frame_f: vprop) (frame_g: (a -> vprop)) (_: squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x)))) : req_t (pre_f `star` frame_f) =
fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x: a) (h1: hmem ((post_f x) `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans ((post_f x) `star` frame_f) ((pre_g x) `star` (frame_g x)) (pre_g x); (req_g x) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (pre_g x))))
false
Steel.Effect.fst
Steel.Effect.focus_replace
val focus_replace (fp0 fp1 fp2: vprop) (m: hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2)
val focus_replace (fp0 fp1 fp2: vprop) (m: hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2)
let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 13, "end_line": 142, "start_col": 0, "start_line": 122 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
fp0: Steel.Effect.Common.vprop -> fp1: Steel.Effect.Common.vprop -> fp2: Steel.Effect.Common.vprop -> m: Steel.Effect.Common.hmem fp0 -> FStar.Pervasives.Lemma (requires Steel.Effect.Common.can_be_split fp0 fp1 /\ Steel.Effect.Common.can_be_split fp1 fp2 ) (ensures Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem fp0 m) fp2 == Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem fp1 m) fp2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.hmem", "FStar.FunctionalExtensionality.extensionality_g", "Steel.Effect.Common.can_be_split", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.unit", "FStar.Classical.forall_intro", "Prims.eq2", "Prims.l_True", "Prims.squash", "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "FStar.Pervasives.delta_only", "FStar.Pervasives.delta_qualifier", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.primops", "FStar.Pervasives.simplify", "FStar.Pervasives.pattern", "Steel.Effect.reveal_focus_rmem", "Steel.Effect.Common.reveal_mk_rmem", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.focus_rmem", "Steel.Effect.Common.mk_rmem", "Prims.l_and", "Steel.Effect.Common.rmem" ]
[]
false
false
true
false
false
let focus_replace (fp0 fp1 fp2: vprop) (m: hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) =
let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r: vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0: vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21
false
Steel.Effect.fst
Steel.Effect.lemma_frame_equalities_refl
val lemma_frame_equalities_refl (frame: vprop) (h: rmem frame) : Lemma (frame_equalities frame h h)
val lemma_frame_equalities_refl (frame: vprop) (h: rmem frame) : Lemma (frame_equalities frame h h)
let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 41, "end_line": 176, "start_col": 0, "start_line": 165 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get ()
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
frame: Steel.Effect.Common.vprop -> h: Steel.Effect.Common.rmem frame -> FStar.Pervasives.Lemma (ensures Steel.Effect.Common.frame_equalities frame h h)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Steel.Effect.Common.vprop'", "Steel.Effect.lemma_frame_equalities_refl", "Prims.unit", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.focus_rmem", "Steel.Effect.Common.can_be_split_star_r", "Steel.Effect.Common.can_be_split_star_l", "Prims.l_True", "Prims.squash", "Steel.Effect.Common.frame_equalities", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_frame_equalities_refl (frame: vprop) (h: rmem frame) : Lemma (frame_equalities frame h h) =
match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2
false
Vale.AES.PPC64LE.GCTR.fsti
Vale.AES.PPC64LE.GCTR.va_quick_Gctr_blocks128
val va_quick_Gctr_blocks128 (alg: algorithm) (in_b out_b: buffer128) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg))
val va_quick_Gctr_blocks128 (alg: algorithm) (in_b out_b: buffer128) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg))
let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_mem_heaplet 1; va_Mod_cr0; va_Mod_vec 19; va_Mod_vec 18; va_Mod_vec 17; va_Mod_vec 16; va_Mod_vec 15; va_Mod_vec 14; va_Mod_vec 13; va_Mod_vec 12; va_Mod_vec 11; va_Mod_vec 10; va_Mod_vec 9; va_Mod_vec 8; va_Mod_vec 7; va_Mod_vec 6; va_Mod_vec 5; va_Mod_vec 4; va_Mod_vec 3; va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 31; va_Mod_reg 30; va_Mod_reg 29; va_Mod_reg 28; va_Mod_reg 27; va_Mod_reg 26; va_Mod_reg 10; va_Mod_reg 9; va_Mod_reg 8; va_Mod_reg 6; va_Mod_reg 7; va_Mod_reg 3; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b))
{ "file_name": "obj/Vale.AES.PPC64LE.GCTR.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 69, "end_line": 192, "start_col": 0, "start_line": 183 }
module Vale.AES.PPC64LE.GCTR open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open FStar.Seq open Vale.AES.AES_BE_s open Vale.AES.PPC64LE.AES open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GCM_helpers_BE open Vale.Poly1305.Math open Vale.Def.Words.Two_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.Memory open Vale.PPC64LE.State open Vale.PPC64LE.Decls open Vale.PPC64LE.InsBasic open Vale.PPC64LE.InsMem open Vale.PPC64LE.InsVector open Vale.PPC64LE.InsStack open Vale.PPC64LE.QuickCode open Vale.PPC64LE.QuickCodes open Vale.AES.Types_helpers #reset-options "--z3rlimit 30" let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_word alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_word alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ reverse_bytes_quad32_seq (s128 heap0 keys_b) == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE #Vale.Def.Words_s.nat32 (FStar.Seq.Base.create #quad32 1 (va_get_vec 1 va_sM))) == Vale.AES.GCTR_BE_s.gctr_encrypt (va_get_vec 7 va_sM) (Vale.Arch.Types.be_quad32_to_bytes (va_get_vec 1 va_s0)) alg key /\ va_get_vec 1 va_sM == Vale.AES.GCTR_BE_s.gctr_encrypt_block (va_get_vec 7 va_sM) (va_get_vec 1 va_s0) alg key 0) /\ va_state_eq va_sM (va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0 va_sM (va_update_reg 10 va_sM (va_update_ok va_sM va_s0))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ (forall (va_x_r10:nat64) (va_x_v0:quad32) (va_x_v1:quad32) (va_x_v2:quad32) . let va_sM = va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 10 va_x_r10 va_s0))) in va_get_ok va_sM /\ (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE #Vale.Def.Words_s.nat32 (FStar.Seq.Base.create #quad32 1 (va_get_vec 1 va_sM))) == Vale.AES.GCTR_BE_s.gctr_encrypt (va_get_vec 7 va_sM) (Vale.Arch.Types.be_quad32_to_bytes (va_get_vec 1 va_s0)) alg key /\ va_get_vec 1 va_sM == Vale.AES.GCTR_BE_s.gctr_encrypt_block (va_get_vec 7 va_sM) (va_get_vec 1 va_s0) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 10]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 10]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ ((Vale.PPC64LE.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.PPC64LE.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 3 va_s0) in_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 7 va_s0) out_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg 3 va_s0 + 16 `op_Multiply` va_get_reg 6 va_s0 < pow2_64 /\ va_get_reg 7 va_s0 + 16 `op_Multiply` va_get_reg 6 va_s0 < pow2_64 /\ l_and (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 out_b) (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b < pow2_32) /\ va_get_reg 6 va_s0 == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b /\ va_get_reg 6 va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.PPC64LE.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR_BE.gctr_partial alg (va_get_reg 6 va_s0) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b)) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b)) key (va_get_vec 7 va_s0) /\ va_get_vec 7 va_sM == Vale.AES.GCTR_BE.inc32lite (va_get_vec 7 va_s0) (va_get_reg 6 va_s0) /\ (va_get_reg 6 va_s0 == 0 ==> Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b) /\ l_and (l_and (va_get_reg 3 va_sM == va_get_reg 3 va_s0) (va_get_reg 7 va_sM == va_get_reg 7 va_s0)) (va_get_reg 6 va_sM == va_get_reg 6 va_s0)) /\ va_state_eq va_sM (va_update_mem_heaplet 1 va_sM (va_update_cr0 va_sM (va_update_vec 19 va_sM (va_update_vec 18 va_sM (va_update_vec 17 va_sM (va_update_vec 16 va_sM (va_update_vec 15 va_sM (va_update_vec 14 va_sM (va_update_vec 13 va_sM (va_update_vec 12 va_sM (va_update_vec 11 va_sM (va_update_vec 10 va_sM (va_update_vec 9 va_sM (va_update_vec 8 va_sM (va_update_vec 7 va_sM (va_update_vec 6 va_sM (va_update_vec 5 va_sM (va_update_vec 4 va_sM (va_update_vec 3 va_sM (va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0 va_sM (va_update_reg 31 va_sM (va_update_reg 30 va_sM (va_update_reg 29 va_sM (va_update_reg 28 va_sM (va_update_reg 27 va_sM (va_update_reg 26 va_sM (va_update_reg 10 va_sM (va_update_reg 9 va_sM (va_update_reg 8 va_sM (va_update_reg 6 va_sM (va_update_reg 7 va_sM (va_update_reg 3 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ ((Vale.PPC64LE.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.PPC64LE.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 3 va_s0) in_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg 7 va_s0) out_b (va_get_reg 6 va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg 3 va_s0 + 16 `op_Multiply` va_get_reg 6 va_s0 < pow2_64 /\ va_get_reg 7 va_s0 + 16 `op_Multiply` va_get_reg 6 va_s0 < pow2_64 /\ l_and (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 out_b) (Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b < pow2_32) /\ va_get_reg 6 va_s0 == Vale.PPC64LE.Decls.buffer_length #Vale.PPC64LE.Memory.vuint128 in_b /\ va_get_reg 6 va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg 4 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_mem:vale_heap) (va_x_r3:nat64) (va_x_r7:nat64) (va_x_r6:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r26:nat64) (va_x_r27:nat64) (va_x_r28:nat64) (va_x_r29:nat64) (va_x_r30:nat64) (va_x_r31:nat64) (va_x_v0:quad32) (va_x_v1:quad32) (va_x_v2:quad32) (va_x_v3:quad32) (va_x_v4:quad32) (va_x_v5:quad32) (va_x_v6:quad32) (va_x_v7:quad32) (va_x_v8:quad32) (va_x_v9:quad32) (va_x_v10:quad32) (va_x_v11:quad32) (va_x_v12:quad32) (va_x_v13:quad32) (va_x_v14:quad32) (va_x_v15:quad32) (va_x_v16:quad32) (va_x_v17:quad32) (va_x_v18:quad32) (va_x_v19:quad32) (va_x_cr0:cr0_t) (va_x_heap1:vale_heap) . let va_sM = va_upd_mem_heaplet 1 va_x_heap1 (va_upd_cr0 va_x_cr0 (va_upd_vec 19 va_x_v19 (va_upd_vec 18 va_x_v18 (va_upd_vec 17 va_x_v17 (va_upd_vec 16 va_x_v16 (va_upd_vec 15 va_x_v15 (va_upd_vec 14 va_x_v14 (va_upd_vec 13 va_x_v13 (va_upd_vec 12 va_x_v12 (va_upd_vec 11 va_x_v11 (va_upd_vec 10 va_x_v10 (va_upd_vec 9 va_x_v9 (va_upd_vec 8 va_x_v8 (va_upd_vec 7 va_x_v7 (va_upd_vec 6 va_x_v6 (va_upd_vec 5 va_x_v5 (va_upd_vec 4 va_x_v4 (va_upd_vec 3 va_x_v3 (va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 31 va_x_r31 (va_upd_reg 30 va_x_r30 (va_upd_reg 29 va_x_r29 (va_upd_reg 28 va_x_r28 (va_upd_reg 27 va_x_r27 (va_upd_reg 26 va_x_r26 (va_upd_reg 10 va_x_r10 (va_upd_reg 9 va_x_r9 (va_upd_reg 8 va_x_r8 (va_upd_reg 6 va_x_r6 (va_upd_reg 7 va_x_r7 (va_upd_reg 3 va_x_r3 (va_upd_mem va_x_mem va_s0)))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (Vale.PPC64LE.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR_BE.gctr_partial alg (va_get_reg 6 va_s0) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b)) (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b)) key (va_get_vec 7 va_s0) /\ va_get_vec 7 va_sM == Vale.AES.GCTR_BE.inc32lite (va_get_vec 7 va_s0) (va_get_reg 6 va_s0) /\ (va_get_reg 6 va_s0 == 0 ==> Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.PPC64LE.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b) /\ l_and (l_and (va_get_reg 3 va_sM == va_get_reg 3 va_s0) (va_get_reg 7 va_sM == va_get_reg 7 va_s0)) (va_get_reg 6 va_sM == va_get_reg 6 va_s0)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_mem_heaplet 1; va_Mod_cr0; va_Mod_vec 19; va_Mod_vec 18; va_Mod_vec 17; va_Mod_vec 16; va_Mod_vec 15; va_Mod_vec 14; va_Mod_vec 13; va_Mod_vec 12; va_Mod_vec 11; va_Mod_vec 10; va_Mod_vec 9; va_Mod_vec 8; va_Mod_vec 7; va_Mod_vec 6; va_Mod_vec 5; va_Mod_vec 4; va_Mod_vec 3; va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 31; va_Mod_reg 30; va_Mod_reg 29; va_Mod_reg 28; va_Mod_reg 27; va_Mod_reg 26; va_Mod_reg 10; va_Mod_reg 9; va_Mod_reg 8; va_Mod_reg 6; va_Mod_reg 7; va_Mod_reg 3; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.QuickCodes.fsti.checked", "Vale.PPC64LE.QuickCode.fst.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.InsVector.fsti.checked", "Vale.PPC64LE.InsStack.fsti.checked", "Vale.PPC64LE.InsMem.fsti.checked", "Vale.PPC64LE.InsBasic.fsti.checked", "Vale.PPC64LE.Decls.fsti.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.Types_helpers.fsti.checked", "Vale.AES.PPC64LE.AES.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.PPC64LE.GCTR.fsti" }
[ { "abbrev": false, "full_module": "Vale.Lib.Basic", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Types_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> in_b: Vale.PPC64LE.Memory.buffer128 -> out_b: Vale.PPC64LE.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.PPC64LE.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.PPC64LE.Memory.quad32 -> keys_b: Vale.PPC64LE.Memory.buffer128 -> Vale.PPC64LE.QuickCode.va_quickCode Prims.unit (Vale.AES.PPC64LE.GCTR.va_code_Gctr_blocks128 alg)
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "Vale.PPC64LE.Memory.buffer128", "FStar.Seq.Base.seq", "Vale.PPC64LE.Memory.nat32", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.QuickCode.va_QProc", "Prims.unit", "Vale.AES.PPC64LE.GCTR.va_code_Gctr_blocks128", "Prims.Cons", "Vale.PPC64LE.QuickCode.mod_t", "Vale.PPC64LE.QuickCode.va_Mod_mem_heaplet", "Vale.PPC64LE.QuickCode.va_Mod_cr0", "Vale.PPC64LE.QuickCode.va_Mod_vec", "Vale.PPC64LE.QuickCode.va_Mod_reg", "Vale.PPC64LE.QuickCode.va_Mod_mem", "Prims.Nil", "Vale.AES.PPC64LE.GCTR.va_wp_Gctr_blocks128", "Vale.AES.PPC64LE.GCTR.va_wpProof_Gctr_blocks128", "Vale.PPC64LE.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Gctr_blocks128 (alg: algorithm) (in_b out_b: buffer128) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) =
(va_QProc (va_code_Gctr_blocks128 alg) ([ va_Mod_mem_heaplet 1; va_Mod_cr0; va_Mod_vec 19; va_Mod_vec 18; va_Mod_vec 17; va_Mod_vec 16; va_Mod_vec 15; va_Mod_vec 14; va_Mod_vec 13; va_Mod_vec 12; va_Mod_vec 11; va_Mod_vec 10; va_Mod_vec 9; va_Mod_vec 8; va_Mod_vec 7; va_Mod_vec 6; va_Mod_vec 5; va_Mod_vec 4; va_Mod_vec 3; va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 31; va_Mod_reg 30; va_Mod_reg 29; va_Mod_reg 28; va_Mod_reg 27; va_Mod_reg 26; va_Mod_reg 10; va_Mod_reg 9; va_Mod_reg 8; va_Mod_reg 6; va_Mod_reg 7; va_Mod_reg 3; va_Mod_mem ]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b))
false
Steel.Effect.fst
Steel.Effect.focus_focus_is_focus
val focus_focus_is_focus (fp0 fp1 fp2: vprop) (m: hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2)
val focus_focus_is_focus (fp0 fp1 fp2: vprop) (m: hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2)
let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 13, "end_line": 120, "start_col": 0, "start_line": 100 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
fp0: Steel.Effect.Common.vprop -> fp1: Steel.Effect.Common.vprop -> fp2: Steel.Effect.Common.vprop -> m: Steel.Effect.Common.hmem fp0 -> FStar.Pervasives.Lemma (requires Steel.Effect.Common.can_be_split fp0 fp1 /\ Steel.Effect.Common.can_be_split fp1 fp2 ) (ensures Steel.Effect.Common.focus_rmem (Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem fp0 m) fp1) fp2 == Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem fp0 m) fp2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.hmem", "FStar.FunctionalExtensionality.extensionality_g", "Steel.Effect.Common.can_be_split", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.unit", "FStar.Classical.forall_intro", "Prims.eq2", "Prims.l_True", "Prims.squash", "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "FStar.Pervasives.delta_only", "FStar.Pervasives.delta_qualifier", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.primops", "FStar.Pervasives.simplify", "FStar.Pervasives.pattern", "Steel.Effect.reveal_focus_rmem", "Steel.Effect.Common.reveal_mk_rmem", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.focus_rmem", "Steel.Effect.Common.mk_rmem", "Prims.l_and", "Steel.Effect.Common.rmem" ]
[]
false
false
true
false
false
let focus_focus_is_focus (fp0 fp1 fp2: vprop) (m: hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) =
let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r: vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0: vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21
false
Steel.Effect.fst
Steel.Effect.lemma_frame_opaque_refl
val lemma_frame_opaque_refl (frame: vprop) (h: rmem frame) : Lemma (frame_opaque frame h h)
val lemma_frame_opaque_refl (frame: vprop) (h: rmem frame) : Lemma (frame_opaque frame h h)
let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl))
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 49, "end_line": 205, "start_col": 0, "start_line": 202 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]]
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
frame: Steel.Effect.Common.vprop -> h: Steel.Effect.Common.rmem frame -> FStar.Pervasives.Lemma (ensures Steel.Effect.frame_opaque frame h h)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "FStar.Tactics.Effect.assert_by_tactic", "Steel.Effect.frame_opaque", "Prims.unit", "FStar.Tactics.V1.Derived.apply_lemma", "FStar.Stubs.Tactics.V1.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil", "Prims.l_True", "Prims.squash", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_frame_opaque_refl (frame: vprop) (h: rmem frame) : Lemma (frame_opaque frame h h) =
FStar.Tactics.Effect.assert_by_tactic (frame_opaque frame h h) (fun _ -> (); (T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)))
false
Steel.Effect.fst
Steel.Effect.reveal_focus_rmem
val reveal_focus_rmem (#r: vprop) (h: rmem r) (r0: vprop{r `can_be_split` r0}) (r': vprop{r0 `can_be_split` r'}) : Lemma (r `can_be_split` r' /\ focus_rmem h r0 r' == h r')
val reveal_focus_rmem (#r: vprop) (h: rmem r) (r0: vprop{r `can_be_split` r0}) (r': vprop{r0 `can_be_split` r'}) : Lemma (r `can_be_split` r' /\ focus_rmem h r0 r' == h r')
let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 55, "end_line": 76, "start_col": 0, "start_line": 71 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Steel.Effect.Common.rmem r -> r0: Steel.Effect.Common.vprop{Steel.Effect.Common.can_be_split r r0} -> r': Steel.Effect.Common.vprop{Steel.Effect.Common.can_be_split r0 r'} -> FStar.Pervasives.Lemma (ensures Steel.Effect.Common.can_be_split r r' /\ Steel.Effect.Common.focus_rmem h r0 r' == h r' )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Steel.Effect.Common.can_be_split", "FStar.FunctionalExtensionality.feq_on_domain_g", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Steel.Effect.Common.unrestricted_focus_rmem", "Prims.unit", "Steel.Effect.Common.can_be_split_trans", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.eq2", "Steel.Effect.Common.focus_rmem", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let reveal_focus_rmem (#r: vprop) (h: rmem r) (r0: vprop{r `can_be_split` r0}) (r': vprop{r0 `can_be_split` r'}) : Lemma (r `can_be_split` r' /\ focus_rmem h r0 r' == h r') =
can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0)
false
Steel.Effect.fst
Steel.Effect.norm_repr
val norm_repr (#a: Type) (#framed: bool) (#pre: pre_t) (#post: post_t a) (#req: req_t pre) (#ens: ens_t pre a post) (f: repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1))
val norm_repr (#a: Type) (#framed: bool) (#pre: pre_t) (#post: post_t a) (#req: req_t pre) (#ens: ens_t pre a post) (f: repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1))
let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 4, "end_line": 261, "start_col": 0, "start_line": 258 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Steel.Effect.repr a framed pre post req ens -> Steel.Effect.repr a framed pre post (fun h -> Steel.Effect.norm_opaque (req h)) (fun h0 x h1 -> Steel.Effect.norm_opaque (ens h0 x h1))
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.repr", "Steel.Effect.Common.rmem", "Steel.Effect.norm_opaque" ]
[]
false
false
false
false
false
let norm_repr (#a: Type) (#framed: bool) (#pre: pre_t) (#post: post_t a) (#req: req_t pre) (#ens: ens_t pre a post) (f: repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) =
f
false
Steel.Effect.fst
Steel.Effect.bind_ens_opaque
val bind_ens_opaque: #a: Type -> #b: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: (a -> pre_t) -> #post_g: (a -> post_t b) -> #pr: (a -> prop) -> ens_g: (x: a -> ens_t (pre_g x) b (post_g x)) -> frame_f: vprop -> frame_g: (a -> vprop) -> post: post_t b -> squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x))) -> squash (can_be_split_post (fun x y -> (post_g x y) `star` (frame_g x)) post) -> ens_t (pre_f `star` frame_f) b post
val bind_ens_opaque: #a: Type -> #b: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: (a -> pre_t) -> #post_g: (a -> post_t b) -> #pr: (a -> prop) -> ens_g: (x: a -> ens_t (pre_g x) b (post_g x)) -> frame_f: vprop -> frame_g: (a -> vprop) -> post: post_t b -> squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x))) -> squash (can_be_split_post (fun x y -> (post_g x y) `star` (frame_g x)) post) -> ens_t (pre_f `star` frame_f) b post
let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y))))
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 108, "end_line": 306, "start_col": 0, "start_line": 283 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x))))
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
req_f: Steel.Effect.Common.req_t pre_f -> ens_f: Steel.Effect.Common.ens_t pre_f a post_f -> ens_g: (x: a -> Steel.Effect.Common.ens_t (pre_g x) b (post_g x)) -> frame_f: Steel.Effect.Common.vprop -> frame_g: (_: a -> Steel.Effect.Common.vprop) -> post: Steel.Effect.Common.post_t b -> _: Prims.squash (Steel.Effect.Common.can_be_split_forall_dep pr (fun x -> Steel.Effect.Common.star (post_f x) frame_f) (fun x -> Steel.Effect.Common.star (pre_g x) (frame_g x))) -> _: Prims.squash (Steel.Effect.Common.can_be_split_post (fun x y -> Steel.Effect.Common.star (post_g x y) (frame_g x)) post) -> Steel.Effect.Common.ens_t (Steel.Effect.Common.star pre_f frame_f) b post
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Prims.prop", "Steel.Effect.Common.vprop", "Prims.squash", "Steel.Effect.Common.can_be_split_forall_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.can_be_split_post", "Steel.Effect.Common.rmem", "Prims.l_and", "Steel.Effect.Common.focus_rmem", "Prims.l_Exists", "Steel.Effect.Common.hmem", "Steel.Effect.frame_opaque", "Steel.Effect.Common.mk_rmem", "Prims.unit", "Steel.Effect.Common.can_be_split_trans" ]
[]
false
false
false
false
false
let bind_ens_opaque (#a: Type) (#b: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: (a -> pre_t)) (#post_g: (a -> post_t b)) (#pr: (a -> prop)) (ens_g: (x: a -> ens_t (pre_g x) b (post_g x))) (frame_f: vprop) (frame_g: (a -> vprop)) (post: post_t b) (_: squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x)))) (_: squash (can_be_split_post (fun x y -> (post_g x y) `star` (frame_g x)) post)) : ens_t (pre_f `star` frame_f) b post =
fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x: a) (h1: hmem ((post_f x) `star` frame_f)). pr x /\ (can_be_split_trans ((post_f x) `star` frame_f) ((pre_g x) `star` (frame_g x)) (pre_g x); can_be_split_trans ((post_f x) `star` frame_f) ((pre_g x) `star` (frame_g x)) (frame_g x); can_be_split_trans (post y) ((post_g x y) `star` (frame_g x)) (post_g x y); can_be_split_trans (post y) ((post_g x y) `star` (frame_g x)) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y))))
false
Steel.Effect.fst
Steel.Effect.bind
val bind (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:a -> post_t b) (#[@@@ framing_implicit] req_g:(x:a -> req_t (pre_g x))) (#[@@@ framing_implicit] ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:a -> vprop) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] _ : squash (maybe_emp_dep framed_g frame_g)) (#[@@@ framing_implicit] pr:a -> prop) (#[@@@ framing_implicit] p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#[@@@ framing_implicit] p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req req_f ens_f req_g frame_f frame_g p1) (bind_ens req_f ens_f ens_g frame_f frame_g post p1 p2)
val bind (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:a -> post_t b) (#[@@@ framing_implicit] req_g:(x:a -> req_t (pre_g x))) (#[@@@ framing_implicit] ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:a -> vprop) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] _ : squash (maybe_emp_dep framed_g frame_g)) (#[@@@ framing_implicit] pr:a -> prop) (#[@@@ framing_implicit] p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#[@@@ framing_implicit] p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req req_f ens_f req_g frame_f frame_g p1) (bind_ens req_f ens_f ens_g frame_f frame_g post p1 p2)
let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 150, "end_line": 414, "start_col": 0, "start_line": 413 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> f: Steel.Effect.repr a framed_f pre_f post_f req_f ens_f -> g: (x: a -> Steel.Effect.repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x)) -> Steel.Effect.repr b true (Steel.Effect.Common.star pre_f frame_f) post (Steel.Effect.bind_req req_f ens_f req_g frame_f frame_g p1) (Steel.Effect.bind_ens req_f ens_f ens_g frame_f frame_g post p1 p2)
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.eqtype_as_type", "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Common.vprop", "Prims.squash", "Steel.Effect.Common.maybe_emp", "Steel.Effect.Common.maybe_emp_dep", "Prims.prop", "Steel.Effect.Common.can_be_split_forall_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.can_be_split_post", "Steel.Effect.repr", "Steel.Effect.norm_repr", "Steel.Effect.bind_req_opaque", "Steel.Effect.bind_ens_opaque", "Steel.Effect.bind_opaque", "Steel.Effect.bind_req", "Steel.Effect.bind_ens" ]
[]
false
false
false
false
false
let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g =
norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g)
false
Steel.Effect.fst
Steel.Effect.as_action
val as_action (#a:Type) (#p:slprop) (#q:a -> slprop) (f:action_except a Set.empty p q) : SteelT a (to_vprop p) (fun x -> to_vprop (q x))
val as_action (#a:Type) (#p:slprop) (#q:a -> slprop) (f:action_except a Set.empty p q) : SteelT a (to_vprop p) (fun x -> to_vprop (q x))
let as_action #a #p #q f = Steel?.reflect (action_as_repr f)
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 60, "end_line": 698, "start_col": 0, "start_line": 698 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) unfold let subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (_:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : pure_pre = (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) val subcomp_opaque (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #_ #p1 #p2 f = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant Set.empty m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1 = nmst_get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant Set.empty m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x #pop-options let lemma_rewrite (p:Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p) = T.unfold_rewrite_with_tactic vc_norm p let lemma_norm_opaque (p:Type) : Lemma (requires norm_opaque p) (ensures p) = () (** Need to manually remove the rewrite_with_tactic marker here *) let lemma_subcomp_pre_opaque_aux1 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) = lemma_rewrite (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) #push-options "--no_tactics" let lemma_subcomp_pre_opaque_aux2 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_norm_opaque (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) let lemma_subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr : prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_subcomp_pre_opaque_aux1 req_f ens_f req_g ens_g p1 p2; lemma_subcomp_pre_opaque_aux2 req_f ens_f req_g ens_g p1 p2 #pop-options let subcomp a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f let bind_pure_steel_ a b #wp #pre #post #req #ens f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame (* We need a bind with DIV to implement par, using reification *) unfold let bind_div_steel_req (#a:Type) (wp:pure_wp a) (#pre_g:pre_t) (req_g:a -> req_t pre_g) : req_t pre_g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun h -> wp (fun _ -> True) /\ (forall x. (req_g x) h) unfold let bind_div_steel_ens (#a:Type) (#b:Type) (wp:pure_wp a) (#pre_g:pre_t) (#post_g:post_t b) (ens_g:a -> ens_t pre_g b post_g) : ens_t pre_g b post_g = fun h0 r h1 -> wp (fun _ -> True) /\ (exists x. ens_g x h0 r h1) #push-options "--z3rlimit 20 --fuel 2 --ifuel 1" let bind_div_steel (a:Type) (b:Type) (wp:pure_wp a) (framed:eqtype_as_type bool) (pre_g:pre_t) (post_g:post_t b) (req_g:a -> req_t pre_g) (ens_g:a -> ens_t pre_g b post_g) (f:eqtype_as_type unit -> DIV a wp) (g:(x:a -> repr b framed pre_g post_g (req_g x) (ens_g x))) : repr b framed pre_g post_g (bind_div_steel_req wp req_g) (bind_div_steel_ens wp ens_g) = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame #pop-options polymonadic_bind (DIV, SteelBase) |> SteelBase = bind_div_steel #pop-options let par0 (#aL:Type u#a) (#preL:vprop) (#postL:aL -> vprop) (f:repr aL false preL postL (fun _ -> True) (fun _ _ _ -> True)) (#aR:Type u#a) (#preR:vprop) (#postR:aR -> vprop) (g:repr aR false preR postR (fun _ -> True) (fun _ _ _ -> True)) : SteelT (aL & aR) (preL `star` preR) (fun y -> postL (fst y) `star` postR (snd y)) = Steel?.reflect (fun frame -> Sem.run #state #_ #_ #_ #_ #_ frame (Sem.Par (Sem.Act f) (Sem.Act g))) (* * AR: Steel is not marked reifiable since we intend to run Steel programs natively * However to implement the par combinator we need to reify a Steel thunk to its repr * We could implement it better by having support for reification only in the .fst file * But for now assuming a (Dv) function *) assume val reify_steel_comp (#a:Type) (#framed:bool) (#pre:vprop) (#post:a -> vprop) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelBase a framed pre post req ens) : Dv (repr a framed pre post req ens) let par f g = par0 (reify_steel_comp f) (reify_steel_comp g) let action_as_repr (#a:Type) (#p:slprop) (#q:a -> slprop) (f:action_except a Set.empty p q) : repr a false (to_vprop p) (fun x -> to_vprop (q x)) (fun _ -> True) (fun _ _ _ -> True) = Steel.Semantics.Instantiate.state_correspondence Set.empty; f
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Steel.Memory.action_except a (FStar.Ghost.hide FStar.Set.empty) p q -> Steel.Effect.SteelT a
Steel.Effect.SteelT
[]
[]
[ "Steel.Memory.slprop", "Steel.Memory.action_except", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.action_as_repr", "Steel.Effect.Common.to_vprop", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let as_action #a #p #q f =
Steel?.reflect (action_as_repr f)
false
Vale.Bignum.Lemmas.fsti
Vale.Bignum.Lemmas.last_carry
val last_carry (a b: nat) (c: nat1) : int
val last_carry (a b: nat) (c: nat1) : int
let last_carry (a b:nat) (c:nat1) : int = if c = 0 then 0 else pow_int a b
{ "file_name": "vale/code/crypto/bignum/Vale.Bignum.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 30, "start_col": 0, "start_line": 29 }
module Vale.Bignum.Lemmas open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Bignum.Defs unfold let (.[]) = Seq.index let rec seq_add_c (#n:nat) (as0 bs:seq (natN n)) (c0:nat1) (i:nat) : Pure nat1 (requires length as0 == length bs /\ i <= length as0) (ensures fun _ -> True) = if i = 0 then c0 else add_hi as0.[i - 1] bs.[i - 1] (seq_add_c as0 bs c0 (i - 1)) let seq_add_i (#n:nat) (as0 bs:seq (natN n)) (c0:nat1) (i:nat) : Pure (natN n) (requires length as0 == length bs /\ i < length as0) (ensures fun _ -> True) = add_lo as0.[i] bs.[i] (seq_add_c as0 bs c0 i) // as0 + bs let seq_add (#n:nat) (as0 bs:seq (natN n)) (c0:nat1) : Pure (seq (natN n) & nat1) (requires length as0 == length bs) (ensures fun (xs, _) -> length xs == length as0) = let f (i:nat{i < length as0}) = seq_add_i as0 bs c0 i in (init (length as0) f, seq_add_c as0 bs c0 (length as0))
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Bignum.Defs.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Bignum.Lemmas.fsti" }
[ { "abbrev": false, "full_module": "Vale.Bignum.Defs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Vale.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat -> c: Vale.Def.Words_s.nat1 -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Def.Words_s.nat1", "Prims.op_Equality", "Prims.int", "Prims.bool", "Vale.Bignum.Defs.pow_int" ]
[]
false
false
false
true
false
let last_carry (a b: nat) (c: nat1) : int =
if c = 0 then 0 else pow_int a b
false
Steel.Effect.fst
Steel.Effect.subcomp_pre_opaque
val subcomp_pre_opaque: #a: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: pre_t -> #post_g: post_t a -> req_g: req_t pre_g -> ens_g: ens_t pre_g a post_g -> #frame: vprop -> #pr: prop -> squash (can_be_split_dep pr pre_g (pre_f `star` frame)) -> squash (equiv_forall post_g (fun x -> (post_f x) `star` frame)) -> pure_pre
val subcomp_pre_opaque: #a: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: pre_t -> #post_g: post_t a -> req_g: req_t pre_g -> ens_g: ens_t pre_g a post_g -> #frame: vprop -> #pr: prop -> squash (can_be_split_dep pr pre_g (pre_f `star` frame)) -> squash (equiv_forall post_g (fun x -> (post_f x) `star` frame)) -> pure_pre
let subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (_:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : pure_pre = (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) ))
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 4, "end_line": 441, "start_col": 0, "start_line": 417 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
req_f: Steel.Effect.Common.req_t pre_f -> ens_f: Steel.Effect.Common.ens_t pre_f a post_f -> req_g: Steel.Effect.Common.req_t pre_g -> ens_g: Steel.Effect.Common.ens_t pre_g a post_g -> _: Prims.squash (Steel.Effect.Common.can_be_split_dep pr pre_g (Steel.Effect.Common.star pre_f frame)) -> _: Prims.squash (Steel.Effect.Common.equiv_forall post_g (fun x -> Steel.Effect.Common.star (post_f x) frame)) -> Prims.pure_pre
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Common.vprop", "Prims.prop", "Prims.squash", "Steel.Effect.Common.can_be_split_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.equiv_forall", "Prims.l_and", "Prims.l_Forall", "Steel.Effect.Common.hmem", "Prims.l_imp", "Steel.Effect.Common.mk_rmem", "Steel.Effect.Common.focus_rmem", "Prims.unit", "Steel.Effect.Common.can_be_split_trans", "Steel.Effect.frame_opaque", "Prims.pure_pre" ]
[]
false
false
false
false
false
let subcomp_pre_opaque (#a: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: pre_t) (#post_g: post_t a) (req_g: req_t pre_g) (ens_g: ens_t pre_g a post_g) (#frame: vprop) (#pr: prop) (_: squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_: squash (equiv_forall post_g (fun x -> (post_f x) `star` frame))) : pure_pre =
(forall (h0: hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ (can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0: hmem pre_g) (x: a) (h1: hmem (post_g x)). (pr ==> (can_be_split_trans (post_g x) ((post_f x) `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) ((post_f x) `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1))))
false
Steel.Effect.fst
Steel.Effect.lemma_rewrite
val lemma_rewrite (p: Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p)
val lemma_rewrite (p: Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p)
let lemma_rewrite (p:Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p) = T.unfold_rewrite_with_tactic vc_norm p
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 42, "end_line": 499, "start_col": 0, "start_line": 498 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) unfold let subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (_:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : pure_pre = (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) val subcomp_opaque (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #_ #p1 #p2 f = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant Set.empty m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1 = nmst_get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant Set.empty m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Type0 -> FStar.Pervasives.Lemma (requires FStar.Tactics.Effect.rewrite_with_tactic Steel.Effect.Common.vc_norm p) (ensures p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Tactics.Effect.unfold_rewrite_with_tactic", "Steel.Effect.Common.vc_norm", "Prims.unit", "FStar.Tactics.Effect.rewrite_with_tactic", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_rewrite (p: Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p) =
T.unfold_rewrite_with_tactic vc_norm p
false
Steel.Effect.fst
Steel.Effect.subcomp
val subcomp (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True)
val subcomp (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True)
let subcomp a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 117, "end_line": 629, "start_col": 0, "start_line": 627 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) unfold let subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (_:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : pure_pre = (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) val subcomp_opaque (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #_ #p1 #p2 f = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant Set.empty m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1 = nmst_get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant Set.empty m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x #pop-options let lemma_rewrite (p:Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p) = T.unfold_rewrite_with_tactic vc_norm p let lemma_norm_opaque (p:Type) : Lemma (requires norm_opaque p) (ensures p) = () (** Need to manually remove the rewrite_with_tactic marker here *) let lemma_subcomp_pre_opaque_aux1 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) = lemma_rewrite (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) #push-options "--no_tactics" let lemma_subcomp_pre_opaque_aux2 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_norm_opaque (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) let lemma_subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr : prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_subcomp_pre_opaque_aux1 req_f ens_f req_g ens_g p1 p2; lemma_subcomp_pre_opaque_aux2 req_f ens_f req_g ens_g p1 p2 #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> f: Steel.Effect.repr a framed_f pre_f post_f req_f ens_f -> Prims.Pure (Steel.Effect.repr a framed_g pre_g post_g req_g ens_g)
Prims.Pure
[]
[]
[ "FStar.Pervasives.eqtype_as_type", "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Common.vprop", "Prims.squash", "Steel.Effect.Common.maybe_emp", "Prims.prop", "Steel.Effect.Common.can_be_split_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.equiv_forall", "Steel.Effect.repr", "Steel.Effect.subcomp_opaque", "Prims.unit", "Steel.Effect.lemma_subcomp_pre_opaque" ]
[]
false
false
false
false
false
let subcomp a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f =
lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f
false
Steel.Effect.fst
Steel.Effect.lemma_subcomp_pre_opaque
val lemma_subcomp_pre_opaque (#a: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: pre_t) (#post_g: post_t a) (req_g: req_t pre_g) (ens_g: ens_t pre_g a post_g) (#frame: vprop) (#pr: prop) (p1: squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2: squash (equiv_forall post_g (fun x -> (post_f x) `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2)
val lemma_subcomp_pre_opaque (#a: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: pre_t) (#post_g: post_t a) (req_g: req_t pre_g) (ens_g: ens_t pre_g a post_g) (#frame: vprop) (#pr: prop) (p1: squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2: squash (equiv_forall post_g (fun x -> (post_f x) `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2)
let lemma_subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr : prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_subcomp_pre_opaque_aux1 req_f ens_f req_g ens_g p1 p2; lemma_subcomp_pre_opaque_aux2 req_f ens_f req_g ens_g p1 p2
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 63, "end_line": 621, "start_col": 0, "start_line": 610 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) unfold let subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (_:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : pure_pre = (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) val subcomp_opaque (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #_ #p1 #p2 f = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant Set.empty m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1 = nmst_get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant Set.empty m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x #pop-options let lemma_rewrite (p:Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p) = T.unfold_rewrite_with_tactic vc_norm p let lemma_norm_opaque (p:Type) : Lemma (requires norm_opaque p) (ensures p) = () (** Need to manually remove the rewrite_with_tactic marker here *) let lemma_subcomp_pre_opaque_aux1 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) = lemma_rewrite (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) #push-options "--no_tactics" let lemma_subcomp_pre_opaque_aux2 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_norm_opaque (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) ))
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": true, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
req_f: Steel.Effect.Common.req_t pre_f -> ens_f: Steel.Effect.Common.ens_t pre_f a post_f -> req_g: Steel.Effect.Common.req_t pre_g -> ens_g: Steel.Effect.Common.ens_t pre_g a post_g -> p1: Prims.squash (Steel.Effect.Common.can_be_split_dep pr pre_g (Steel.Effect.Common.star pre_f frame)) -> p2: Prims.squash (Steel.Effect.Common.equiv_forall post_g (fun x -> Steel.Effect.Common.star (post_f x) frame)) -> FStar.Pervasives.Lemma (requires Steel.Effect.subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures Steel.Effect.subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Common.vprop", "Prims.prop", "Prims.squash", "Steel.Effect.Common.can_be_split_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.equiv_forall", "Steel.Effect.lemma_subcomp_pre_opaque_aux2", "Prims.unit", "Steel.Effect.lemma_subcomp_pre_opaque_aux1", "Steel.Effect.subcomp_pre", "Steel.Effect.subcomp_pre_opaque", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_subcomp_pre_opaque (#a: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: pre_t) (#post_g: post_t a) (req_g: req_t pre_g) (ens_g: ens_t pre_g a post_g) (#frame: vprop) (#pr: prop) (p1: squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2: squash (equiv_forall post_g (fun x -> (post_f x) `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) =
lemma_subcomp_pre_opaque_aux1 req_f ens_f req_g ens_g p1 p2; lemma_subcomp_pre_opaque_aux2 req_f ens_f req_g ens_g p1 p2
false
Steel.Effect.fst
Steel.Effect.bind_div_steel
val bind_div_steel (a b: Type) (wp: pure_wp a) (framed: eqtype_as_type bool) (pre_g: pre_t) (post_g: post_t b) (req_g: (a -> req_t pre_g)) (ens_g: (a -> ens_t pre_g b post_g)) (f: (eqtype_as_type unit -> DIV a wp)) (g: (x: a -> repr b framed pre_g post_g (req_g x) (ens_g x))) : repr b framed pre_g post_g (bind_div_steel_req wp req_g) (bind_div_steel_ens wp ens_g)
val bind_div_steel (a b: Type) (wp: pure_wp a) (framed: eqtype_as_type bool) (pre_g: pre_t) (post_g: post_t b) (req_g: (a -> req_t pre_g)) (ens_g: (a -> ens_t pre_g b post_g)) (f: (eqtype_as_type unit -> DIV a wp)) (g: (x: a -> repr b framed pre_g post_g (req_g x) (ens_g x))) : repr b framed pre_g post_g (bind_div_steel_req wp req_g) (bind_div_steel_ens wp ens_g)
let bind_div_steel (a:Type) (b:Type) (wp:pure_wp a) (framed:eqtype_as_type bool) (pre_g:pre_t) (post_g:post_t b) (req_g:a -> req_t pre_g) (ens_g:a -> ens_t pre_g b post_g) (f:eqtype_as_type unit -> DIV a wp) (g:(x:a -> repr b framed pre_g post_g (req_g x) (ens_g x))) : repr b framed pre_g post_g (bind_div_steel_req wp req_g) (bind_div_steel_ens wp ens_g) = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 11, "end_line": 665, "start_col": 0, "start_line": 654 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) unfold let subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (_:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : pure_pre = (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) val subcomp_opaque (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #_ #p1 #p2 f = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant Set.empty m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1 = nmst_get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant Set.empty m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x #pop-options let lemma_rewrite (p:Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p) = T.unfold_rewrite_with_tactic vc_norm p let lemma_norm_opaque (p:Type) : Lemma (requires norm_opaque p) (ensures p) = () (** Need to manually remove the rewrite_with_tactic marker here *) let lemma_subcomp_pre_opaque_aux1 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) = lemma_rewrite (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) #push-options "--no_tactics" let lemma_subcomp_pre_opaque_aux2 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_norm_opaque (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) )) let lemma_subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr : prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) = lemma_subcomp_pre_opaque_aux1 req_f ens_f req_g ens_g p1 p2; lemma_subcomp_pre_opaque_aux2 req_f ens_f req_g ens_g p1 p2 #pop-options let subcomp a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f let bind_pure_steel_ a b #wp #pre #post #req #ens f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame (* We need a bind with DIV to implement par, using reification *) unfold let bind_div_steel_req (#a:Type) (wp:pure_wp a) (#pre_g:pre_t) (req_g:a -> req_t pre_g) : req_t pre_g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun h -> wp (fun _ -> True) /\ (forall x. (req_g x) h) unfold let bind_div_steel_ens (#a:Type) (#b:Type) (wp:pure_wp a) (#pre_g:pre_t) (#post_g:post_t b) (ens_g:a -> ens_t pre_g b post_g) : ens_t pre_g b post_g = fun h0 r h1 -> wp (fun _ -> True) /\ (exists x. ens_g x h0 r h1)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> wp: Prims.pure_wp a -> framed: FStar.Pervasives.eqtype_as_type Prims.bool -> pre_g: Steel.Effect.Common.pre_t -> post_g: Steel.Effect.Common.post_t b -> req_g: (_: a -> Steel.Effect.Common.req_t pre_g) -> ens_g: (_: a -> Steel.Effect.Common.ens_t pre_g b post_g) -> f: (_: FStar.Pervasives.eqtype_as_type Prims.unit -> FStar.Pervasives.DIV a) -> g: (x: a -> Steel.Effect.repr b framed pre_g post_g (req_g x) (ens_g x)) -> Steel.Effect.repr b framed pre_g post_g (Steel.Effect.bind_div_steel_req wp req_g) (Steel.Effect.bind_div_steel_ens wp ens_g)
Prims.Tot
[ "total" ]
[]
[ "Prims.pure_wp", "FStar.Pervasives.eqtype_as_type", "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Prims.unit", "Steel.Effect.repr", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__hprop", "Steel.Semantics.Instantiate.state", "FStar.Monotonic.Pure.elim_pure_wp_monotonicity", "Steel.Effect.bind_div_steel_req", "Steel.Effect.bind_div_steel_ens" ]
[]
false
false
false
false
false
let bind_div_steel (a b: Type) (wp: pure_wp a) (framed: eqtype_as_type bool) (pre_g: pre_t) (post_g: post_t b) (req_g: (a -> req_t pre_g)) (ens_g: (a -> ens_t pre_g b post_g)) (f: (eqtype_as_type unit -> DIV a wp)) (g: (x: a -> repr b framed pre_g post_g (req_g x) (ens_g x))) : repr b framed pre_g post_g (bind_div_steel_req wp req_g) (bind_div_steel_ens wp ens_g) =
FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame
false
Vale.Bignum.Lemmas.fsti
Vale.Bignum.Lemmas.seq_add_i
val seq_add_i (#n: nat) (as0 bs: seq (natN n)) (c0: nat1) (i: nat) : Pure (natN n) (requires length as0 == length bs /\ i < length as0) (ensures fun _ -> True)
val seq_add_i (#n: nat) (as0 bs: seq (natN n)) (c0: nat1) (i: nat) : Pure (natN n) (requires length as0 == length bs /\ i < length as0) (ensures fun _ -> True)
let seq_add_i (#n:nat) (as0 bs:seq (natN n)) (c0:nat1) (i:nat) : Pure (natN n) (requires length as0 == length bs /\ i < length as0) (ensures fun _ -> True) = add_lo as0.[i] bs.[i] (seq_add_c as0 bs c0 i)
{ "file_name": "vale/code/crypto/bignum/Vale.Bignum.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 19, "start_col": 0, "start_line": 15 }
module Vale.Bignum.Lemmas open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Bignum.Defs unfold let (.[]) = Seq.index let rec seq_add_c (#n:nat) (as0 bs:seq (natN n)) (c0:nat1) (i:nat) : Pure nat1 (requires length as0 == length bs /\ i <= length as0) (ensures fun _ -> True) = if i = 0 then c0 else add_hi as0.[i - 1] bs.[i - 1] (seq_add_c as0 bs c0 (i - 1))
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Bignum.Defs.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Bignum.Lemmas.fsti" }
[ { "abbrev": false, "full_module": "Vale.Bignum.Defs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Vale.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
as0: FStar.Seq.Base.seq (Vale.Def.Words_s.natN n) -> bs: FStar.Seq.Base.seq (Vale.Def.Words_s.natN n) -> c0: Vale.Def.Words_s.nat1 -> i: Prims.nat -> Prims.Pure (Vale.Def.Words_s.natN n)
Prims.Pure
[]
[]
[ "Prims.nat", "FStar.Seq.Base.seq", "Vale.Def.Words_s.natN", "Vale.Def.Words_s.nat1", "Vale.Bignum.Defs.add_lo", "Vale.Bignum.Lemmas.op_String_Access", "Vale.Bignum.Lemmas.seq_add_c", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.length", "Prims.b2t", "Prims.op_LessThan", "Prims.l_True" ]
[]
false
false
false
false
false
let seq_add_i (#n: nat) (as0 bs: seq (natN n)) (c0: nat1) (i: nat) : Pure (natN n) (requires length as0 == length bs /\ i < length as0) (ensures fun _ -> True) =
add_lo as0.[ i ] bs.[ i ] (seq_add_c as0 bs c0 i)
false
Steel.Effect.fst
Steel.Effect.lemma_subcomp_pre_opaque_aux1
val lemma_subcomp_pre_opaque_aux1 (#a: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: pre_t) (#post_g: post_t a) (req_g: req_t pre_g) (ens_g: ens_t pre_g a post_g) (#frame: vprop) (#pr: prop) (p1: squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2: squash (equiv_forall post_g (fun x -> (post_f x) `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ((forall (h0: hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ (can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0: hmem pre_g) (x: a) (h1: hmem (post_g x)). (pr ==> (can_be_split_trans (post_g x) ((post_f x) `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) ((post_f x) `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1))))))
val lemma_subcomp_pre_opaque_aux1 (#a: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: pre_t) (#post_g: post_t a) (req_g: req_t pre_g) (ens_g: ens_t pre_g a post_g) (#frame: vprop) (#pr: prop) (p1: squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2: squash (equiv_forall post_g (fun x -> (post_f x) `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ((forall (h0: hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ (can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0: hmem pre_g) (x: a) (h1: hmem (post_g x)). (pr ==> (can_be_split_trans (post_g x) ((post_f x) `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) ((post_f x) `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1))))))
let lemma_subcomp_pre_opaque_aux1 (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )))) = lemma_rewrite (squash ( (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) ))
{ "file_name": "lib/steel/Steel.Effect.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 6, "end_line": 552, "start_col": 0, "start_line": 504 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory open Steel.Semantics.Instantiate module FExt = FStar.FunctionalExtensionality #set-options "--ide_id_info_off" let _:squash (forall p q. can_be_split p q == Mem.slimp (hp_of p) (hp_of q)) = reveal_can_be_split () #set-options "--warn_error -330" //turn off the experimental feature warning let rmem_depends_only_on' (pre:pre_t) (m0:hmem pre) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro (reveal_mk_rmem pre m0); Classical.forall_intro (reveal_mk_rmem pre (join m0 m1)); FExt.extensionality_g (r0:vprop{can_be_split pre r0}) (fun r0 -> normal (t_of r0)) (mk_rmem pre m0) (mk_rmem pre (join m0 m1)) let rmem_depends_only_on (pre:pre_t) : Lemma (forall (m0:hmem pre) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro_2 (rmem_depends_only_on' pre) let rmem_depends_only_on_post' (#a:Type) (post:post_t a) (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}) : Lemma (mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = rmem_depends_only_on' (post x) m0 m1 let rmem_depends_only_on_post (#a:Type) (post:post_t a) : Lemma (forall (x:a) (m0:hmem (post x)) (m1:mem{disjoint m0 m1}). mk_rmem (post x) m0 == mk_rmem (post x) (join m0 m1)) = Classical.forall_intro_3 (rmem_depends_only_on_post' post) [@@ __steel_reduce__] let req_to_act_req (#pre:pre_t) (req:req_t pre) : Sem.l_pre #state (hp_of pre) = rmem_depends_only_on pre; fun m0 -> interp (hp_of pre) m0 /\ req (mk_rmem pre m0) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) [@@ __steel_reduce__] let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : Sem.l_post #state #a (hp_of pre) (to_post post) = rmem_depends_only_on pre; rmem_depends_only_on_post post; fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let reveal_focus_rmem (#r:vprop) (h:rmem r) (r0:vprop{r `can_be_split` r0}) (r':vprop{r0 `can_be_split` r'}) : Lemma ( r `can_be_split` r' /\ focus_rmem h r0 r' == h r') = can_be_split_trans r r0 r'; FExt.feq_on_domain_g (unrestricted_focus_rmem h r0) let focus_is_restrict_mk_rmem (fp0 fp1:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1) (ensures focus_rmem (mk_rmem fp0 m) fp1 == mk_rmem fp1 m) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f2:rmem fp1 = focus_rmem f0 fp1 in let aux (r:vprop{can_be_split fp1 r}) : Lemma (f1 r == f2 r) = can_be_split_trans fp0 fp1 r; reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp1 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp1 r0}) (fun r0 -> normal (t_of r0)) (mk_rmem fp1 m) (focus_rmem (mk_rmem fp0 m) fp1) let focus_focus_is_focus (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (focus_rmem (mk_rmem fp0 m) fp1) fp2 == focus_rmem (mk_rmem fp0 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = focus_rmem f0 fp1 in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_focus_rmem f0 fp1 r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 let focus_replace (fp0 fp1 fp2:vprop) (m:hmem fp0) : Lemma (requires fp0 `can_be_split` fp1 /\ fp1 `can_be_split` fp2) (ensures focus_rmem (mk_rmem fp0 m) fp2 == focus_rmem (mk_rmem fp1 m) fp2) = let f0:rmem fp0 = mk_rmem fp0 m in let f1:rmem fp1 = mk_rmem fp1 m in let f20:rmem fp2 = focus_rmem f0 fp2 in let f21:rmem fp2 = focus_rmem f1 fp2 in let aux (r:vprop{can_be_split fp2 r}) : Lemma (f20 r == f21 r) = reveal_mk_rmem fp0 m r; reveal_mk_rmem fp1 m r; reveal_focus_rmem f0 fp2 r; reveal_focus_rmem f1 fp2 r in Classical.forall_intro aux; FExt.extensionality_g (r0:vprop{can_be_split fp2 r0}) (fun r0 -> normal (t_of r0)) f20 f21 val can_be_split_3_interp (p1 p2 q r:slprop u#1) (m:mem) : Lemma (requires p1 `slimp` p2 /\ interp (p1 `Mem.star` q `Mem.star` r) m) (ensures interp (p2 `Mem.star` q `Mem.star` r) m) let can_be_split_3_interp p1 p2 q r m = Mem.star_associative p1 q r; Mem.star_associative p2 q r; slimp_star p1 p2 (q `Mem.star` r) (q `Mem.star` r) let repr (a:Type) (_:bool) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) = Sem.action_t #state #a (hp_of pre) (to_post post) ((req_to_act_req req)) ((ens_to_act_ens ens)) let nmst_get (#st:Sem.st) () : Sem.Mst (Sem.full_mem st) (fun _ -> True) (fun s0 s s1 -> s0 == s /\ s == s1) = NMST.get () let rec lemma_frame_equalities_refl (frame:vprop) (h:rmem frame) : Lemma (frame_equalities frame h h) = match frame with | VUnit _ -> () | VStar p1 p2 -> can_be_split_star_l p1 p2; can_be_split_star_r p1 p2; let h1 = focus_rmem h p1 in let h2 = focus_rmem h p2 in lemma_frame_equalities_refl p1 h1; lemma_frame_equalities_refl p2 h2 let return_ a x #p = fun _ -> let m0 = nmst_get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" val req_frame (frame:vprop) (snap:rmem frame) : mprop (hp_of frame) let req_frame' (frame:vprop) (snap:rmem frame) (m:mem) : prop = interp (hp_of frame) m /\ mk_rmem frame m == snap let req_frame frame snap = rmem_depends_only_on frame; req_frame' frame snap #push-options "--z3rlimit 50 --fuel 1 --ifuel 0" let frame_opaque frame h0 h1 = frame_equalities frame h0 h1 unfold let norm_opaque = norm [delta_only [`%frame_opaque]] let lemma_frame_opaque_refl (frame:vprop) (h:rmem frame) : Lemma (frame_opaque frame h h) = assert (frame_opaque frame h h) by ( T.norm [delta_only [`%frame_opaque]]; T.apply_lemma (`lemma_frame_equalities_refl)) val frame00 (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed pre post req ens) (frame:vprop) : repr a true (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) let frame00 #a #framed #pre #post #req #ens f frame = fun frame' -> let m0 = nmst_get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (state.interp (((hp_of pre `state.star` hp_of frame) `state.star` frame' `state.star` state.locks_invariant m0)) m0); let req' = (Steel.Semantics.Hoare.MST.frame_lpre #Steel.Semantics.Instantiate.state #(Steel.Effect.Common.hp_of pre) (req_to_act_req #pre req) #(Steel.Effect.Common.hp_of frame) (req_frame frame snap)) in assert (req' (state.core m0)); let x = Sem.run #state #_ #_ #_ #_ #_ frame' (Sem.Frame (Sem.Act f) (hp_of frame) (req_frame frame snap)) in let m1 = nmst_get () in can_be_split_star_r pre frame; focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); can_be_split_star_r (post x) frame; focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); // We proved focus_rmem h0 frame == focus_rmem h1 frame so far let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in lemma_frame_opaque_refl frame (focus_rmem h0 frame); x #pop-options let norm_repr (#a:Type) (#framed:bool) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed pre post req ens) : repr a framed pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) #push-options "--z3rlimit 20" let bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1 = nmst_get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant Set.empty m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2 = nmst_get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant Set.empty m2) m2; y #pop-options let bind a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) unfold let subcomp_pre_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:pre_t) (#post_g:post_t a) (req_g:req_t pre_g) (ens_g:ens_t pre_g a post_g) (#frame:vprop) (#pr:prop) (_:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (_:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) : pure_pre = (forall (h0:hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ ( can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0:hmem pre_g) (x:a) (h1:hmem (post_g x)). ( pr ==> ( can_be_split_trans (post_g x) (post_f x `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) (post_f x `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_opaque frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)) )) val subcomp_opaque (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) #push-options "--fuel 1 --ifuel 1 --z3rlimit 20" let subcomp_opaque a #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #_ #p1 #p2 f = fun frame -> let m0 = nmst_get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant Set.empty m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1 = nmst_get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant Set.empty m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x #pop-options let lemma_rewrite (p:Type) : Lemma (requires T.rewrite_with_tactic vc_norm p) (ensures p) = T.unfold_rewrite_with_tactic vc_norm p let lemma_norm_opaque (p:Type) : Lemma (requires norm_opaque p) (ensures p) = ()
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Instantiate.fsti.checked", "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.NMST.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.fst" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": false, "full_module": "Steel.Semantics.Instantiate", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "FExt" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
req_f: Steel.Effect.Common.req_t pre_f -> ens_f: Steel.Effect.Common.ens_t pre_f a post_f -> req_g: Steel.Effect.Common.req_t pre_g -> ens_g: Steel.Effect.Common.ens_t pre_g a post_g -> p1: Prims.squash (Steel.Effect.Common.can_be_split_dep pr pre_g (Steel.Effect.Common.star pre_f frame)) -> p2: Prims.squash (Steel.Effect.Common.equiv_forall post_g (fun x -> Steel.Effect.Common.star (post_f x) frame)) -> FStar.Pervasives.Lemma (requires Steel.Effect.subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures (forall (h0: Steel.Effect.Common.hmem pre_g). req_g (Steel.Effect.Common.mk_rmem pre_g h0) ==> pr /\ (Steel.Effect.Common.can_be_split_trans pre_g (Steel.Effect.Common.star pre_f frame) pre_f; req_f (Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem pre_g h0) pre_f))) /\ (forall (h0: Steel.Effect.Common.hmem pre_g) (x: a) (h1: Steel.Effect.Common.hmem (post_g x)). pr ==> (Steel.Effect.Common.can_be_split_trans (post_g x) (Steel.Effect.Common.star (post_f x) frame) (post_f x); Steel.Effect.Common.can_be_split_trans pre_g (Steel.Effect.Common.star pre_f frame) frame; Steel.Effect.Common.can_be_split_trans (post_g x) (Steel.Effect.Common.star (post_f x) frame) frame; Steel.Effect.Common.can_be_split_trans pre_g (Steel.Effect.Common.star pre_f frame) pre_f; req_g (Steel.Effect.Common.mk_rmem pre_g h0) /\ ens_f (Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem pre_g h0) pre_f) x (Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem (post_g x) h1) (post_f x)) /\ Steel.Effect.Common.frame_equalities frame (Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem pre_g h0) frame) (Steel.Effect.Common.focus_rmem (Steel.Effect.Common.mk_rmem (post_g x) h1) frame) ==> ens_g (Steel.Effect.Common.mk_rmem pre_g h0) x (Steel.Effect.Common.mk_rmem (post_g x) h1))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Common.vprop", "Prims.prop", "Prims.squash", "Steel.Effect.Common.can_be_split_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.equiv_forall", "Steel.Effect.lemma_rewrite", "Prims.l_and", "Prims.l_Forall", "Steel.Effect.Common.hmem", "Prims.l_imp", "Steel.Effect.Common.mk_rmem", "Steel.Effect.Common.focus_rmem", "Prims.unit", "Steel.Effect.Common.can_be_split_trans", "Steel.Effect.Common.frame_equalities", "Steel.Effect.subcomp_pre", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_subcomp_pre_opaque_aux1 (#a: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: pre_t) (#post_g: post_t a) (req_g: req_t pre_g) (ens_g: ens_t pre_g a post_g) (#frame: vprop) (#pr: prop) (p1: squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (p2: squash (equiv_forall post_g (fun x -> (post_f x) `star` frame))) : Lemma (requires subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures ((forall (h0: hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ (can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0: hmem pre_g) (x: a) (h1: hmem (post_g x)). (pr ==> (can_be_split_trans (post_g x) ((post_f x) `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) ((post_f x) `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1)))))) =
lemma_rewrite (squash ((forall (h0: hmem pre_g). req_g (mk_rmem pre_g h0) ==> pr /\ (can_be_split_trans pre_g (pre_f `star` frame) pre_f; req_f (focus_rmem (mk_rmem pre_g h0) pre_f))) /\ (forall (h0: hmem pre_g) (x: a) (h1: hmem (post_g x)). (pr ==> (can_be_split_trans (post_g x) ((post_f x) `star` frame) (post_f x); can_be_split_trans (pre_g) (pre_f `star` frame) frame; can_be_split_trans (post_g x) ((post_f x) `star` frame) frame; can_be_split_trans pre_g (pre_f `star` frame) pre_f; (req_g (mk_rmem pre_g h0) /\ ens_f (focus_rmem (mk_rmem pre_g h0) pre_f) x (focus_rmem (mk_rmem (post_g x) h1) (post_f x)) /\ frame_equalities frame (focus_rmem (mk_rmem pre_g h0) frame) (focus_rmem (mk_rmem (post_g x) h1) frame)) ==> ens_g (mk_rmem pre_g h0) x (mk_rmem (post_g x) h1))))))
false
Vale.Bignum.Lemmas.fsti
Vale.Bignum.Lemmas.seq_scale_hi
val seq_scale_hi (#n: pos) (a: natN n) (bs: seq (natN n)) (d: natN n) : Pure (seq (natN n)) (requires True) (ensures fun xs -> length xs = length bs + 1)
val seq_scale_hi (#n: pos) (a: natN n) (bs: seq (natN n)) (d: natN n) : Pure (seq (natN n)) (requires True) (ensures fun xs -> length xs = length bs + 1)
let seq_scale_hi (#n:pos) (a:natN n) (bs:seq (natN n)) (d:natN n) : Pure (seq (natN n)) (requires True) (ensures fun xs -> length xs = length bs + 1) = let f (i:nat{i <= length bs}) : natN n = if i = 0 then d else mul_hi a bs.[i - 1] in init (length bs + 1) f
{ "file_name": "vale/code/crypto/bignum/Vale.Bignum.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 44, "start_col": 0, "start_line": 39 }
module Vale.Bignum.Lemmas open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Bignum.Defs unfold let (.[]) = Seq.index let rec seq_add_c (#n:nat) (as0 bs:seq (natN n)) (c0:nat1) (i:nat) : Pure nat1 (requires length as0 == length bs /\ i <= length as0) (ensures fun _ -> True) = if i = 0 then c0 else add_hi as0.[i - 1] bs.[i - 1] (seq_add_c as0 bs c0 (i - 1)) let seq_add_i (#n:nat) (as0 bs:seq (natN n)) (c0:nat1) (i:nat) : Pure (natN n) (requires length as0 == length bs /\ i < length as0) (ensures fun _ -> True) = add_lo as0.[i] bs.[i] (seq_add_c as0 bs c0 i) // as0 + bs let seq_add (#n:nat) (as0 bs:seq (natN n)) (c0:nat1) : Pure (seq (natN n) & nat1) (requires length as0 == length bs) (ensures fun (xs, _) -> length xs == length as0) = let f (i:nat{i < length as0}) = seq_add_i as0 bs c0 i in (init (length as0) f, seq_add_c as0 bs c0 (length as0)) let last_carry (a b:nat) (c:nat1) : int = if c = 0 then 0 else pow_int a b let seq_scale_lo (#n:pos) (a:natN n) (bs:seq (natN n)) : Pure (seq (natN n)) (requires True) (ensures fun xs -> length xs = length bs + 1) = let f (i:nat{i <= length bs}) : natN n = if i = length bs then 0 else mul_lo a bs.[i] in init (length bs + 1) f
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Bignum.Defs.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Bignum.Lemmas.fsti" }
[ { "abbrev": false, "full_module": "Vale.Bignum.Defs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Vale.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Vale.Def.Words_s.natN n -> bs: FStar.Seq.Base.seq (Vale.Def.Words_s.natN n) -> d: Vale.Def.Words_s.natN n -> Prims.Pure (FStar.Seq.Base.seq (Vale.Def.Words_s.natN n))
Prims.Pure
[]
[]
[ "Prims.pos", "Vale.Def.Words_s.natN", "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "Prims.op_Addition", "FStar.Seq.Base.length", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.bool", "Vale.Bignum.Defs.mul_hi", "Vale.Bignum.Lemmas.op_String_Access", "Prims.op_Subtraction", "Prims.l_True" ]
[]
false
false
false
false
false
let seq_scale_hi (#n: pos) (a: natN n) (bs: seq (natN n)) (d: natN n) : Pure (seq (natN n)) (requires True) (ensures fun xs -> length xs = length bs + 1) =
let f (i: nat{i <= length bs}) : natN n = if i = 0 then d else mul_hi a bs.[ i - 1 ] in init (length bs + 1) f
false