file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.UInt128.fst | FStar.UInt128.lem_ult | val lem_ult (a b: uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) | val lem_ult (a b: uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) | let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 96,
"start_col": 0,
"start_line": 90
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt.uint_t 64 -> b: FStar.UInt.uint_t 64
-> FStar.Pervasives.Lemma
(ensures
((match a < b with
| true -> FStar.UInt128.fact1 a b
| _ -> FStar.UInt128.fact0 a b)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt.uint_t",
"FStar.UInt128.lem_ult_2",
"Prims.unit",
"FStar.UInt128.lem_ult_1",
"FStar.UInt128.int2bv_ult",
"Prims.l_True",
"Prims.squash",
"Prims.op_LessThan",
"FStar.UInt128.fact1",
"Prims.bool",
"FStar.UInt128.fact0",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lem_ult (a b: uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) =
| int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b | false |
FStar.UInt128.fst | FStar.UInt128.int2bv_ult | val int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) | val int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) | let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 88,
"start_col": 0,
"start_line": 83
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n
-> FStar.Pervasives.Lemma
(ensures a < b <==> FStar.BV.bvult (FStar.BV.int2bv a) (FStar.BV.int2bv b)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"FStar.UInt.uint_t",
"FStar.Classical.Sugar.implies_intro",
"Prims.b2t",
"FStar.BV.bvult",
"FStar.BV.int2bv",
"Prims.squash",
"Prims.op_LessThan",
"FStar.BV.int2bv_lemma_ult_2",
"Prims.unit",
"FStar.BV.int2bv_lemma_ult_1",
"Prims.l_True",
"Prims.l_iff",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) =
| introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _. FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _. FStar.BV.int2bv_lemma_ult_2 a b | false |
FStar.UInt128.fst | FStar.UInt128.t | val t: (x:Type0{hasEq x}) | val t: (x:Type0{hasEq x}) | let t = uint128 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 113,
"start_col": 0,
"start_line": 113
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Type0{Prims.hasEq x} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt128.uint128"
] | [] | false | false | false | false | false | let t =
| uint128 | false |
FStar.UInt128.fst | FStar.UInt128.v | val v (x:t) : Tot (uint_t n) | val v (x:t) : Tot (uint_t n) | let v x = U64.v x.low + (U64.v x.high) * (pow2 64) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 119,
"start_col": 0,
"start_line": 119
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt128.t -> FStar.UInt.uint_t FStar.UInt128.n | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt128.t",
"Prims.op_Addition",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.Mul.op_Star",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.pow2",
"FStar.UInt.uint_t",
"FStar.UInt128.n"
] | [] | false | false | false | true | false | let v x =
| U64.v x.low + (U64.v x.high) * (pow2 64) | false |
FStar.UInt128.fst | FStar.UInt128.mod_mul | val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) | val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) | let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 221,
"start_col": 0,
"start_line": 220
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> k1: Prims.pos -> k2: Prims.pos
-> FStar.Pervasives.Lemma (ensures (n % k2) * k1 == n * k1 % (k1 * k2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.pos",
"FStar.Math.Lemmas.modulo_scale_lemma",
"Prims.unit"
] | [] | true | false | true | false | false | let mod_mul n k1 k2 =
| Math.modulo_scale_lemma n k1 k2 | false |
FStar.UInt128.fst | FStar.UInt128.mod_mod | val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k) | val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k) | let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 203,
"start_col": 0,
"start_line": 201
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.nat -> k: Prims.nat{k > 0} -> k': Prims.nat{k' > 0}
-> FStar.Pervasives.Lemma (ensures a % k % (k' * k) == a % k) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims._assert",
"Prims.op_LessThan",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.unit"
] | [] | true | false | true | false | false | let mod_mod a k k' =
| assert (a % k < k);
assert (a % k < k' * k) | false |
FStar.UInt128.fst | FStar.UInt128.v_inj | val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) | val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) | let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
() | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 133,
"start_col": 0,
"start_line": 128
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x1: FStar.UInt128.t -> x2: FStar.UInt128.t
-> FStar.Pervasives.Lemma (requires FStar.UInt128.v x1 == FStar.UInt128.v x2) (ensures x1 == x2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.UInt128.uint_to_t",
"FStar.UInt128.v",
"FStar.UInt.uint_t",
"FStar.UInt128.n",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let v_inj (x1 x2: t) : Lemma (requires (v x1 == v x2)) (ensures x1 == x2) =
| assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
() | false |
FStar.UInt128.fst | FStar.UInt128.uint_to_t | val uint_to_t: x:uint_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x)) | val uint_to_t: x:uint_t n -> Pure t
(requires True)
(ensures (fun y -> v y = x)) | let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); } | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 126,
"start_col": 0,
"start_line": 123
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt.uint_t FStar.UInt128.n -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt.uint_t",
"FStar.UInt128.n",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.uint_to_t",
"Prims.op_Modulus",
"Prims.pow2",
"Prims.op_Division",
"Prims.unit",
"FStar.UInt128.div_mod",
"FStar.UInt128.t"
] | [] | false | false | false | false | false | let uint_to_t x =
| div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)) } | false |
FStar.UInt128.fst | FStar.UInt128.carry | val carry (a b: U64.t)
: Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) | val carry (a b: U64.t)
: Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) | let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 176,
"start_col": 0,
"start_line": 172
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.t",
"FStar.UInt128.constant_time_carry",
"Prims.unit",
"FStar.UInt128.constant_time_carry_ok",
"Prims.l_True",
"Prims.eq2",
"Prims.int",
"FStar.UInt64.v",
"Prims.op_LessThan",
"Prims.bool"
] | [] | false | false | false | false | false | let carry (a b: U64.t)
: Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
| constant_time_carry_ok a b;
constant_time_carry a b | false |
FStar.UInt128.fst | FStar.UInt128.vec128 | val vec128 (a: t) : BV.bv_t 128 | val vec128 (a: t) : BV.bv_t 128 | let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 56,
"end_line": 388,
"start_col": 0,
"start_line": 388
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> FStar.BitVector.bv_t 128 | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt128.t",
"FStar.UInt.to_vec",
"FStar.UInt128.v",
"FStar.BitVector.bv_t"
] | [] | false | false | false | false | false | let vec128 (a: t) : BV.bv_t 128 =
| UInt.to_vec #128 (v a) | false |
Hacl.Bignum4096_32.fsti | Hacl.Bignum4096_32.n_bytes | val n_bytes : FStar.UInt32.t | let n_bytes = n_limbs `FStar.UInt32.mul` 4ul | {
"file_name": "code/bignum/Hacl.Bignum4096_32.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 18,
"start_col": 0,
"start_line": 18
} | module Hacl.Bignum4096_32
open FStar.Mul
module BN = Hacl.Bignum
module BS = Hacl.Bignum.SafeAPI
module MA = Hacl.Bignum.MontArithmetic
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let t_limbs: Hacl.Bignum.Definitions.limb_t = Lib.IntTypes.U32
inline_for_extraction noextract
let n_limbs: BN.meta_len t_limbs = 128ul | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Bignum.SafeAPI.fst.checked",
"Hacl.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Convert.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum4096_32.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.MontArithmetic",
"short_module": "MA"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.SafeAPI",
"short_module": "BS"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.UInt32.t | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt32.mul",
"Hacl.Bignum4096_32.n_limbs",
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | true | false | let n_bytes =
| n_limbs `FStar.UInt32.mul` 4ul | false |
|
FStar.UInt128.fst | FStar.UInt128.vec64 | val vec64 (a: U64.t) : BV.bv_t 64 | val vec64 (a: U64.t) : BV.bv_t 64 | let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 389,
"start_col": 0,
"start_line": 389
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> FStar.BitVector.bv_t 64 | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.to_vec",
"FStar.UInt64.n",
"FStar.UInt64.v",
"FStar.BitVector.bv_t"
] | [] | false | false | false | false | false | let vec64 (a: U64.t) : BV.bv_t 64 =
| UInt.to_vec (U64.v a) | false |
FStar.UInt128.fst | FStar.UInt128.div_product | val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2) | val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2) | let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 211,
"start_col": 0,
"start_line": 210
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> m1: Prims.nat{m1 > 0} -> m2: Prims.nat{m2 > 0}
-> FStar.Pervasives.Lemma (ensures n / (m1 * m2) == n / m1 / m2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.Math.Lemmas.division_multiplication_lemma",
"Prims.unit"
] | [] | true | false | true | false | false | let div_product n m1 m2 =
| Math.division_multiplication_lemma n m1 m2 | false |
FStar.UInt128.fst | FStar.UInt128.add | val add: a:t -> b:t -> Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c)) | val add: a:t -> b:t -> Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c)) | let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); } | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 187,
"start_col": 0,
"start_line": 181
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.add",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.carry",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims.unit",
"FStar.UInt128.carry_sum_ok",
"FStar.UInt64.t",
"FStar.UInt64.add_mod",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.UInt128.v",
"Prims.pow2",
"Prims.op_Equality",
"Prims.int"
] | [] | false | false | false | false | false | let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) =
| let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l; high = U64.add (U64.add a.high b.high) (carry l b.low) } | false |
FStar.UInt128.fst | FStar.UInt128.mod_add | val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) | val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) | let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 56,
"end_line": 228,
"start_col": 0,
"start_line": 228
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n1: Prims.nat -> n2: Prims.nat -> k: Prims.nat{k > 0}
-> FStar.Pervasives.Lemma (ensures (n1 % k + n2 % k) % k == (n1 + n2) % k) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.Math.Lemmas.modulo_distributivity",
"Prims.unit"
] | [] | true | false | true | false | false | let mod_add n1 n2 k =
| Math.modulo_distributivity n1 n2 k | false |
Hacl.Bignum4096_32.fsti | Hacl.Bignum4096_32.n_limbs | val n_limbs:BN.meta_len t_limbs | val n_limbs:BN.meta_len t_limbs | let n_limbs: BN.meta_len t_limbs = 128ul | {
"file_name": "code/bignum/Hacl.Bignum4096_32.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 15,
"start_col": 0,
"start_line": 15
} | module Hacl.Bignum4096_32
open FStar.Mul
module BN = Hacl.Bignum
module BS = Hacl.Bignum.SafeAPI
module MA = Hacl.Bignum.MontArithmetic
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let t_limbs: Hacl.Bignum.Definitions.limb_t = Lib.IntTypes.U32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Bignum.SafeAPI.fst.checked",
"Hacl.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Convert.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum4096_32.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.MontArithmetic",
"short_module": "MA"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.SafeAPI",
"short_module": "BS"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Bignum.meta_len Hacl.Bignum4096_32.t_limbs | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | true | false | let n_limbs:BN.meta_len t_limbs =
| 128ul | false |
FStar.UInt128.fst | FStar.UInt128.mod_spec_rew_n | val mod_spec_rew_n (n: nat) (k: nat{k > 0}) : Lemma (n == (n / k) * k + n % k) | val mod_spec_rew_n (n: nat) (k: nat{k > 0}) : Lemma (n == (n / k) * k + n % k) | let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 224,
"start_col": 0,
"start_line": 223
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> k: Prims.nat{k > 0} -> FStar.Pervasives.Lemma (ensures n == (n / k) * k + n % k) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.UInt128.mod_spec",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let mod_spec_rew_n (n: nat) (k: nat{k > 0}) : Lemma (n == (n / k) * k + n % k) =
| mod_spec n k | false |
FStar.UInt128.fst | FStar.UInt128.mod_add_small | val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k)) | val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k)) | let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 43,
"end_line": 235,
"start_col": 0,
"start_line": 233
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n1: Prims.nat -> n2: Prims.nat -> k: Prims.nat{k > 0}
-> FStar.Pervasives.Lemma (requires n1 % k + n2 % k < k)
(ensures n1 % k + n2 % k == (n1 + n2) % k) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.Math.Lemmas.small_modulo_lemma_1",
"Prims.op_Addition",
"Prims.op_Modulus",
"Prims.unit",
"FStar.UInt128.mod_add"
] | [] | true | false | true | false | false | let mod_add_small n1 n2 k =
| mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1 % k + n2 % k) k | false |
FStar.UInt128.fst | FStar.UInt128.sub_mod_wrap1_ok | val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) | val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) | let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 334,
"start_col": 0,
"start_line": 323
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 10,
"quake_keep": false,
"quake_lo": 1,
"retry": true,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t
-> FStar.Pervasives.Lemma
(requires
FStar.UInt128.v a - FStar.UInt128.v b < 0 /\
FStar.UInt64.v (Mkuint128?.low a) < FStar.UInt64.v (Mkuint128?.low b))
(ensures
FStar.UInt128.v (FStar.UInt128.sub_mod_impl a b) =
FStar.UInt128.v a - FStar.UInt128.v b + Prims.pow2 128) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.op_Equality",
"FStar.UInt.uint_t",
"FStar.UInt64.n",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.bool",
"Prims.unit",
"FStar.UInt128.u64_diff_wrap",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.UInt128.carry",
"FStar.UInt64.t",
"FStar.UInt64.sub_mod"
] | [] | false | false | true | false | false | let sub_mod_wrap1_ok a b =
| let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
if U64.v a.high = U64.v b.high
then ()
else
(u64_diff_wrap a.high b.high;
()) | false |
FStar.UInt128.fst | FStar.UInt128.add_underspec | val add_underspec: a:t -> b:t -> Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c)) | val add_underspec: a:t -> b:t -> Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c)) | let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 83,
"end_line": 197,
"start_col": 0,
"start_line": 189
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.add_underspec",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.carry",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims.unit",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.UInt128.v",
"Prims.pow2",
"FStar.UInt128.carry_sum_ok",
"Prims.bool",
"FStar.UInt64.t",
"FStar.UInt64.add_mod"
] | [] | false | false | false | false | false | let add_underspec (a b: t) =
| let l = U64.add_mod a.low b.low in
if v a + v b < pow2 128 then carry_sum_ok a.low b.low;
{ low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low) } | false |
FStar.UInt128.fst | FStar.UInt128.sub_mod_wrap2_ok | val sub_mod_wrap2_ok (a b: t)
: Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) | val sub_mod_wrap2_ok (a b: t)
: Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) | let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
() | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 352,
"start_col": 0,
"start_line": 341
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t
-> FStar.Pervasives.Lemma
(requires
FStar.UInt128.v a - FStar.UInt128.v b < 0 /\
FStar.UInt64.v (Mkuint128?.low a) >= FStar.UInt64.v (Mkuint128?.low b))
(ensures
FStar.UInt128.v (FStar.UInt128.sub_mod_impl a b) =
FStar.UInt128.v a - FStar.UInt128.v b + Prims.pow2 128) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.UInt64.v",
"FStar.UInt64.sub_mod",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.op_Addition",
"Prims.op_Subtraction",
"Prims.pow2",
"FStar.UInt128.sum_lt",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.Mul.op_Star",
"FStar.UInt128.carry",
"FStar.UInt128.sub_mod_impl",
"FStar.UInt64.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt128.v",
"Prims.op_GreaterThanOrEqual",
"Prims.squash",
"Prims.op_Equality",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let sub_mod_wrap2_ok (a b: t)
: Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
| let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
() | false |
FStar.UInt128.fst | FStar.UInt128.sub_mod_pos_ok | val sub_mod_pos_ok (a b: t)
: Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) | val sub_mod_pos_ok (a b: t)
: Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) | let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
() | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 309,
"start_col": 0,
"start_line": 305
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 10,
"quake_keep": false,
"quake_lo": 1,
"retry": true,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t
-> FStar.Pervasives.Lemma (requires FStar.UInt128.v a - FStar.UInt128.v b >= 0)
(ensures
FStar.UInt128.v (FStar.UInt128.sub_mod_impl a b) = FStar.UInt128.v a - FStar.UInt128.v b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.UInt128.sub",
"FStar.UInt128.sub_mod_impl",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Subtraction",
"FStar.UInt128.v",
"Prims.squash",
"Prims.op_Equality",
"Prims.int",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let sub_mod_pos_ok (a b: t)
: Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) =
| assert (sub a b == sub_mod_impl a b);
() | false |
FStar.UInt128.fst | FStar.UInt128.mul_div_cancel | val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n) | val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n) | let mul_div_cancel n k =
Math.cancel_mul_div n k | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 216,
"start_col": 0,
"start_line": 215
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> k: Prims.nat{k > 0} -> FStar.Pervasives.Lemma (ensures n * k / k == n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.Math.Lemmas.cancel_mul_div",
"Prims.unit"
] | [] | true | false | true | false | false | let mul_div_cancel n k =
| Math.cancel_mul_div n k | false |
FStar.UInt128.fst | FStar.UInt128.sub_mod | val sub_mod: a:t -> b:t -> Pure t
(requires True)
(ensures (fun c -> (v a - v b) % pow2 n = v c)) | val sub_mod: a:t -> b:t -> Pure t
(requires True)
(ensures (fun c -> (v a - v b) % pow2 n = v c)) | let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 368,
"start_col": 0,
"start_line": 362
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt128.sub_mod_impl",
"Prims.unit",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Subtraction",
"FStar.UInt128.v",
"FStar.UInt128.sub_mod_pos_ok",
"Prims.bool",
"FStar.UInt128.sub_mod_wrap_ok",
"Prims.l_True",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.pow2"
] | [] | false | false | false | false | false | let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) =
| (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b);
sub_mod_impl a b | false |
FStar.UInt128.fst | FStar.UInt128.constant_time_carry_ok | val constant_time_carry_ok (a b: U64.t)
: Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) | val constant_time_carry_ok (a b: U64.t)
: Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) | let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 98,
"end_line": 170,
"start_col": 0,
"start_line": 144
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt128.constant_time_carry a b ==
(match FStar.UInt64.lt a b with
| true -> 1uL
| _ -> 0uL)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt64.v_inj",
"FStar.UInt128.constant_time_carry",
"FStar.UInt64.lt",
"FStar.UInt64.uint_to_t",
"Prims.bool",
"Prims.unit",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt64.n",
"FStar.BV.bv2int",
"Prims.op_LessThan",
"FStar.UInt64.v",
"FStar.BV.int2bv",
"FStar.BV.bv_t",
"FStar.Stubs.Tactics.V2.Builtins.norm",
"Prims.Nil",
"FStar.Pervasives.norm_step",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"FStar.Calc.calc_step",
"FStar.UInt128.carry_bv",
"FStar.UInt128.carry_uint64",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.UInt128.carry_uint64_equiv",
"Prims.squash",
"FStar.BV.inverse_num_lemma",
"FStar.UInt128.bv2int_fun",
"FStar.UInt128.carry_uint64_ok",
"FStar.UInt128.lem_ult",
"Prims.l_True",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let constant_time_carry_ok (a b: U64.t)
: Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) =
| calc ( == ) {
U64.v (constant_time_carry a b);
( == ) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
( == ) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
( == ) { (carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()) }
bv2int (carry_bv (U64.v a) (U64.v b));
( == ) { (lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)) }
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0);
};
FStar.Tactics.Effect.assert_by_tactic (bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) ==
U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
(fun _ ->
();
(T.norm []));
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) | false |
FStar.UInt128.fst | FStar.UInt128.sub | val sub: a:t -> b:t -> Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c)) | val sub: a:t -> b:t -> Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c)) | let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); } | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 291,
"start_col": 0,
"start_line": 286
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 5,
"quake_keep": false,
"quake_lo": 1,
"retry": true,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.sub",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.carry",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt64.t",
"FStar.UInt64.sub_mod",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Subtraction",
"FStar.UInt128.v",
"Prims.op_Equality",
"Prims.int"
] | [] | false | false | false | false | false | let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) =
| let l = U64.sub_mod a.low b.low in
{ low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l) } | false |
FStar.UInt128.fst | FStar.UInt128.sub_mod_wrap_ok | val sub_mod_wrap_ok (a b: t)
: Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) | val sub_mod_wrap_ok (a b: t)
: Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) | let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 359,
"start_col": 0,
"start_line": 354
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t
-> FStar.Pervasives.Lemma (requires FStar.UInt128.v a - FStar.UInt128.v b < 0)
(ensures
FStar.UInt128.v (FStar.UInt128.sub_mod_impl a b) =
FStar.UInt128.v a - FStar.UInt128.v b + Prims.pow2 128) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.op_LessThan",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt128.sub_mod_wrap1_ok",
"Prims.bool",
"FStar.UInt128.sub_mod_wrap2_ok",
"Prims.unit",
"Prims.b2t",
"Prims.op_Subtraction",
"FStar.UInt128.v",
"Prims.squash",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt128.sub_mod_impl",
"Prims.op_Addition",
"Prims.pow2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let sub_mod_wrap_ok (a b: t)
: Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
| if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b | false |
FStar.UInt128.fst | FStar.UInt128.sub_underspec | val sub_underspec: a:t -> b:t -> Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c)) | val sub_underspec: a:t -> b:t -> Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c)) | let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 81,
"end_line": 297,
"start_col": 0,
"start_line": 294
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.sub_underspec",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.carry",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt64.t",
"FStar.UInt64.sub_mod"
] | [] | false | false | false | false | false | let sub_underspec (a b: t) =
| let l = U64.sub_mod a.low b.low in
{ low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l) } | false |
FStar.UInt128.fst | FStar.UInt128.to_vec_append | val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) | val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) | let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 386,
"start_col": 0,
"start_line": 385
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | num1: FStar.UInt.uint_t n1 -> num2: FStar.UInt.uint_t n2
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt.to_vec (FStar.UInt128.append_uint num1 num2) ==
FStar.Seq.Base.append (FStar.UInt.to_vec num2) (FStar.UInt.to_vec num1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.UInt.uint_t",
"FStar.UInt.append_lemma",
"FStar.UInt.to_vec",
"Prims.unit"
] | [] | true | false | true | false | false | let to_vec_append #n1 #n2 num1 num2 =
| UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) | false |
FStar.UInt128.fst | FStar.UInt128.append_uint | val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) | val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) | let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 23,
"end_line": 381,
"start_col": 0,
"start_line": 379
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | num1: FStar.UInt.uint_t n1 -> num2: FStar.UInt.uint_t n2 -> FStar.UInt.uint_t (n1 + n2) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt.uint_t",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit",
"FStar.UInt128.shift_bound"
] | [] | false | false | false | false | false | let append_uint #n1 #n2 num1 num2 =
| shift_bound num2 n1;
num1 + num2 * pow2 n1 | false |
FStar.UInt128.fst | FStar.UInt128.to_vec_v | val to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) | val to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) | let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 393,
"start_col": 0,
"start_line": 391
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt128.vec128 a ==
FStar.Seq.Base.append (FStar.UInt128.vec64 (Mkuint128?.high a))
(FStar.UInt128.vec64 (Mkuint128?.low a))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"FStar.UInt128.to_vec_append",
"FStar.UInt64.n",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Prims.bool",
"FStar.UInt128.vec128",
"FStar.Seq.Base.append",
"FStar.UInt128.vec64",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
| to_vec_append (U64.v a.low) (U64.v a.high) | false |
FStar.UInt128.fst | FStar.UInt128.shift_bound | val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') | val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') | let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 376,
"start_col": 0,
"start_line": 373
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | num: FStar.UInt.uint_t n -> n': Prims.nat
-> FStar.Pervasives.Lemma (ensures num * Prims.pow2 n' <= Prims.pow2 (n' + n) - Prims.pow2 n') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.UInt.uint_t",
"FStar.Math.Lemmas.pow2_plus",
"Prims.unit",
"FStar.Math.Lemmas.distributivity_sub_left",
"Prims.pow2",
"FStar.Math.Lemmas.lemma_mult_le_right",
"Prims.op_Subtraction"
] | [] | true | false | true | false | false | let shift_bound #n num n' =
| Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n | false |
FStar.UInt128.fst | FStar.UInt128.logxor_vec_append | val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 85,
"end_line": 421,
"start_col": 0,
"start_line": 419
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a1: FStar.BitVector.bv_t n1 ->
b1: FStar.BitVector.bv_t n1 ->
a2: FStar.BitVector.bv_t n2 ->
b2: FStar.BitVector.bv_t n2
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.append (FStar.BitVector.logxor_vec a1 b1) (FStar.BitVector.logxor_vec a2 b2) ==
FStar.BitVector.logxor_vec (FStar.Seq.Base.append a1 a2) (FStar.Seq.Base.append b1 b2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"FStar.BitVector.bv_t",
"FStar.Seq.Base.lemma_eq_intro",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.BitVector.logxor_vec",
"Prims.op_Addition",
"Prims.unit"
] | [] | true | false | true | false | false | let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
| Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | false |
FStar.UInt128.fst | FStar.UInt128.logand | val logand: a:t -> b:t -> Pure t
(requires True)
(ensures (fun r -> v r == logand (v a) (v b))) | val logand: a:t -> b:t -> Pure t
(requires True)
(ensures (fun r -> v r == logand (v a) (v b))) | let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 414,
"start_col": 0,
"start_line": 402
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.BitVector.bv_t",
"FStar.UInt128.vec128",
"FStar.BitVector.logand_vec",
"FStar.UInt128.to_vec_v",
"FStar.UInt128.logand_vec_append",
"FStar.UInt128.vec64",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.Seq.Base.seq",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.logand",
"Prims.l_True",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt.uint_t",
"FStar.UInt128.n",
"FStar.UInt128.v",
"FStar.UInt.logand"
] | [] | false | false | false | false | false | let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
| let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r | false |
FStar.UInt128.fst | FStar.UInt128.logor_vec_append | val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 84,
"end_line": 442,
"start_col": 0,
"start_line": 440
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a1: FStar.BitVector.bv_t n1 ->
b1: FStar.BitVector.bv_t n1 ->
a2: FStar.BitVector.bv_t n2 ->
b2: FStar.BitVector.bv_t n2
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.append (FStar.BitVector.logor_vec a1 b1) (FStar.BitVector.logor_vec a2 b2) ==
FStar.BitVector.logor_vec (FStar.Seq.Base.append a1 a2) (FStar.Seq.Base.append b1 b2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"FStar.BitVector.bv_t",
"FStar.Seq.Base.lemma_eq_intro",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.BitVector.logor_vec",
"Prims.op_Addition",
"Prims.unit"
] | [] | true | false | true | false | false | let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
| Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | false |
FStar.UInt128.fst | FStar.UInt128.shift_past_mod | val shift_past_mod (n k1: nat) (k2: nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) | val shift_past_mod (n k1: nat) (k2: nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) | let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 488,
"start_col": 0,
"start_line": 483
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> k1: Prims.nat -> k2: Prims.nat{k2 >= k1}
-> FStar.Pervasives.Lemma (ensures n * Prims.pow2 k2 % Prims.pow2 k1 == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt128.mod_mul_cancel",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.pow2_plus",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.l_True",
"Prims.squash",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let shift_past_mod (n k1: nat) (k2: nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) =
| assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) | false |
FStar.UInt128.fst | FStar.UInt128.logxor | val logxor: a:t -> b:t -> Pure t
(requires True)
(ensures (fun r -> v r == logxor (v a) (v b))) | val logxor: a:t -> b:t -> Pure t
(requires True)
(ensures (fun r -> v r == logxor (v a) (v b))) | let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 435,
"start_col": 0,
"start_line": 423
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.BitVector.bv_t",
"FStar.UInt128.vec128",
"FStar.BitVector.logxor_vec",
"FStar.UInt128.to_vec_v",
"FStar.UInt128.logxor_vec_append",
"FStar.UInt128.vec64",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.Seq.Base.seq",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.logxor",
"Prims.l_True",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt.uint_t",
"FStar.UInt128.n",
"FStar.UInt128.v",
"FStar.UInt.logxor"
] | [] | false | false | false | false | false | let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
| let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r | false |
FStar.UInt128.fst | FStar.UInt128.lognot | val lognot: a:t -> Pure t
(requires True)
(ensures (fun r -> v r == lognot (v a))) | val lognot: a:t -> Pure t
(requires True)
(ensures (fun r -> v r == lognot (v a))) | let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 475,
"start_col": 0,
"start_line": 465
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.BitVector.bv_t",
"FStar.UInt128.vec128",
"FStar.BitVector.lognot_vec",
"FStar.UInt128.to_vec_v",
"FStar.UInt128.lognot_vec_append",
"FStar.UInt128.vec64",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.Seq.Base.seq",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.lognot",
"Prims.l_True",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt.uint_t",
"FStar.UInt128.n",
"FStar.UInt128.v",
"FStar.UInt.lognot"
] | [] | false | false | false | false | false | let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) =
| let r = { low = U64.lognot a.low; high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r | false |
FStar.UInt128.fst | FStar.UInt128.mod_mul_cancel | val mod_mul_cancel (n: nat) (k: nat{k > 0}) : Lemma ((n * k) % k == 0) | val mod_mul_cancel (n: nat) (k: nat{k > 0}) : Lemma ((n * k) % k == 0) | let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
() | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 481,
"start_col": 0,
"start_line": 477
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> k: Prims.nat{k > 0} -> FStar.Pervasives.Lemma (ensures n * k % k == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.unit",
"FStar.UInt128.mul_div_cancel",
"FStar.UInt128.mod_spec",
"FStar.Mul.op_Star",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let mod_mul_cancel (n: nat) (k: nat{k > 0}) : Lemma ((n * k) % k == 0) =
| mod_spec (n * k) k;
mul_div_cancel n k;
() | false |
FStar.UInt128.fst | FStar.UInt128.shift_left_large_lemma | val shift_left_large_lemma
(#n1 #n2: nat)
(a1: UInt.uint_t n1)
(a2: UInt.uint_t n2)
(s: nat{s >= n2})
: Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1 + n2) == (a1 * pow2 s) % pow2 (n1 + n2)) | val shift_left_large_lemma
(#n1 #n2: nat)
(a1: UInt.uint_t n1)
(a2: UInt.uint_t n2)
(s: nat{s >= n2})
: Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1 + n2) == (a1 * pow2 s) % pow2 (n1 + n2)) | let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
() | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 509,
"start_col": 0,
"start_line": 502
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a1: FStar.UInt.uint_t n1 -> a2: FStar.UInt.uint_t n2 -> s: Prims.nat{s >= n2}
-> FStar.Pervasives.Lemma
(ensures
(a1 + a2 * Prims.pow2 n1) * Prims.pow2 s % Prims.pow2 (n1 + n2) ==
a1 * Prims.pow2 s % Prims.pow2 (n1 + n2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.UInt.uint_t",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.unit",
"FStar.UInt128.mod_double",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Addition",
"FStar.UInt128.shift_past_mod",
"FStar.UInt128.mod_add",
"FStar.UInt128.shift_left_large_val",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let shift_left_large_lemma
(#n1 #n2: nat)
(a1: UInt.uint_t n1)
(a2: UInt.uint_t n2)
(s: nat{s >= n2})
: Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1 + n2) == (a1 * pow2 s) % pow2 (n1 + n2)) =
| shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1 + s)) (pow2 (n1 + n2));
shift_past_mod a2 (n1 + n2) (n1 + s);
mod_double (a1 * pow2 s) (pow2 (n1 + n2));
() | false |
FStar.UInt128.fst | FStar.UInt128.lognot_vec_append | val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) | val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) | let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 67,
"end_line": 463,
"start_col": 0,
"start_line": 461
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a1: FStar.BitVector.bv_t n1 -> a2: FStar.BitVector.bv_t n2
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.append (FStar.BitVector.lognot_vec a1) (FStar.BitVector.lognot_vec a2) ==
FStar.BitVector.lognot_vec (FStar.Seq.Base.append a1 a2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"FStar.BitVector.bv_t",
"FStar.Seq.Base.lemma_eq_intro",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.BitVector.lognot_vec",
"Prims.op_Addition",
"Prims.unit"
] | [] | true | false | true | false | false | let lognot_vec_append #n1 #n2 a1 a2 =
| Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) | false |
FStar.UInt128.fst | FStar.UInt128.u32_64 | val u32_64:n: U32.t{U32.v n == 64} | val u32_64:n: U32.t{U32.v n == 64} | let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 519,
"start_col": 8,
"start_line": 519
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: FStar.UInt32.t{FStar.UInt32.v n == 64} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt32.uint_to_t"
] | [] | false | false | false | false | false | let u32_64:n: U32.t{U32.v n == 64} =
| U32.uint_to_t 64 | false |
FStar.UInt128.fst | FStar.UInt128.shift_left_large_val | val shift_left_large_val (#n1 #n2: nat) (a1: UInt.uint_t n1) (a2: UInt.uint_t n2) (s: nat)
: Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1 + s))) | val shift_left_large_val (#n1 #n2: nat) (a1: UInt.uint_t n1) (a2: UInt.uint_t n2) (s: nat)
: Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1 + s))) | let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 499,
"start_col": 0,
"start_line": 495
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a1: FStar.UInt.uint_t n1 -> a2: FStar.UInt.uint_t n2 -> s: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
(a1 + a2 * Prims.pow2 n1) * Prims.pow2 s == a1 * Prims.pow2 s + a2 * Prims.pow2 (n1 + s)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.UInt.uint_t",
"FStar.Math.Lemmas.pow2_plus",
"Prims.unit",
"FStar.Math.Lemmas.paren_mul_right",
"Prims.pow2",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Mul.op_Star",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let shift_left_large_val (#n1 #n2: nat) (a1: UInt.uint_t n1) (a2: UInt.uint_t n2) (s: nat)
: Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1 + s))) =
| Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s | false |
FStar.UInt128.fst | FStar.UInt128.logand_vec_append | val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 85,
"end_line": 400,
"start_col": 0,
"start_line": 398
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a1: FStar.BitVector.bv_t n1 ->
b1: FStar.BitVector.bv_t n1 ->
a2: FStar.BitVector.bv_t n2 ->
b2: FStar.BitVector.bv_t n2
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.append (FStar.BitVector.logand_vec a1 b1) (FStar.BitVector.logand_vec a2 b2) ==
FStar.BitVector.logand_vec (FStar.Seq.Base.append a1 a2) (FStar.Seq.Base.append b1 b2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"FStar.BitVector.bv_t",
"FStar.Seq.Base.lemma_eq_intro",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.BitVector.logand_vec",
"Prims.op_Addition",
"Prims.unit"
] | [] | true | false | true | false | false | let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
| Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | false |
FStar.UInt128.fst | FStar.UInt128.shift_left_large_lemma_t | val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128)) | val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128)) | let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 63,
"end_line": 517,
"start_col": 0,
"start_line": 516
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: Prims.nat
-> FStar.Pervasives.Lemma (requires s >= 64)
(ensures
FStar.UInt128.v a * Prims.pow2 s % Prims.pow2 128 ==
FStar.UInt64.v (Mkuint128?.low a) * Prims.pow2 s % Prims.pow2 128) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.nat",
"FStar.UInt128.shift_left_large_lemma",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.unit"
] | [] | true | false | true | false | false | let shift_left_large_lemma_t a s =
| shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s | false |
FStar.UInt128.fst | FStar.UInt128.logor | val logor: a:t -> b:t -> Pure t
(requires True)
(ensures (fun r -> v r == logor (v a) (v b))) | val logor: a:t -> b:t -> Pure t
(requires True)
(ensures (fun r -> v r == logor (v a) (v b))) | let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 456,
"start_col": 0,
"start_line": 444
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.BitVector.bv_t",
"FStar.UInt128.vec128",
"FStar.BitVector.logor_vec",
"FStar.UInt128.to_vec_v",
"FStar.UInt128.logor_vec_append",
"FStar.UInt128.vec64",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.Seq.Base.seq",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.logor",
"Prims.l_True",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt.uint_t",
"FStar.UInt128.n",
"FStar.UInt128.v",
"FStar.UInt.logor"
] | [] | false | false | false | false | false | let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
| let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r | false |
FStar.UInt128.fst | FStar.UInt128.add_mod_small' | val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k)) | val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k)) | let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 620,
"start_col": 0,
"start_line": 617
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> m: Prims.nat -> k: Prims.pos
-> FStar.Pervasives.Lemma (requires n + m % k < k) (ensures n + m % k == (n + m) % k) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.pos",
"FStar.UInt128.mod_add",
"Prims.unit",
"FStar.Math.Lemmas.modulo_lemma",
"FStar.Math.Lemmas.lemma_mod_lt",
"Prims.op_Addition",
"Prims.op_Modulus"
] | [] | true | false | true | false | false | let add_mod_small' n m k =
| Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k | false |
FStar.UInt128.fst | FStar.UInt128.shift_t_mod_val' | val shift_t_mod_val' (a: t) (s: nat{s < 64})
: Lemma
((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s) % pow2 128) | val shift_t_mod_val' (a: t) (s: nat{s < 64})
: Lemma
((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s) % pow2 128) | let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
() | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 664,
"start_col": 0,
"start_line": 653
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: Prims.nat{s < 64}
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt128.v a * Prims.pow2 s % Prims.pow2 128 ==
FStar.UInt64.v (Mkuint128?.low a) * Prims.pow2 s +
FStar.UInt64.v (Mkuint128?.high a) * Prims.pow2 (64 + s) % Prims.pow2 128) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.unit",
"FStar.UInt128.shift_t_val",
"FStar.UInt128.add_mod_small'",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Addition",
"FStar.UInt128.add_lt_le",
"Prims.op_Modulus",
"Prims.op_Subtraction",
"FStar.UInt128.mul_mod_bound",
"FStar.UInt128.u64_pow2_bound",
"FStar.UInt.uint_t",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"FStar.UInt128.v",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let shift_t_mod_val' (a: t) (s: nat{s < 64})
: Lemma
((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s) % pow2 128) =
| let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64 + s) 128;
add_lt_le (a_l * pow2 s) (pow2 (64 + s)) (a_h * pow2 (64 + s) % pow2 128) (pow2 128 - pow2 (64 + s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64 + s)) (pow2 128);
shift_t_val a s;
() | false |
FStar.UInt128.fst | FStar.UInt128.div_pow2_diff | val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) | val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) | let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 528,
"start_col": 0,
"start_line": 524
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.nat -> n1: Prims.nat -> n2: Prims.nat{n2 <= n1}
-> FStar.Pervasives.Lemma (ensures a / Prims.pow2 (n1 - n2) == a * Prims.pow2 n2 / Prims.pow2 n1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt128.mul_div_cancel",
"Prims.pow2",
"Prims.unit",
"FStar.UInt128.div_product",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"FStar.Math.Lemmas.pow2_plus"
] | [] | true | false | true | false | false | let div_pow2_diff a n1 n2 =
| Math.pow2_plus n2 (n1 - n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1 - n2));
mul_div_cancel a (pow2 n2) | false |
FStar.UInt128.fst | FStar.UInt128.mod_double | val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k) | val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k) | let mod_double a k =
mod_mod a k 1 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 493,
"start_col": 0,
"start_line": 492
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.nat -> k: Prims.nat{k > 0} -> FStar.Pervasives.Lemma (ensures a % k % k == a % k) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"FStar.UInt128.mod_mod",
"Prims.unit"
] | [] | true | false | true | false | false | let mod_double a k =
| mod_mod a k 1 | false |
FStar.UInt128.fst | FStar.UInt128.mul_pow2_diff | val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) | val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) | let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 735,
"start_col": 0,
"start_line": 732
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.nat -> n1: Prims.nat -> n2: Prims.nat{n2 <= n1}
-> FStar.Pervasives.Lemma (ensures a * Prims.pow2 (n1 - n2) == a * Prims.pow2 n1 / Prims.pow2 n2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Math.Lemmas.pow2_plus",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.UInt128.mul_div_cancel",
"FStar.Mul.op_Star",
"Prims.pow2",
"FStar.Math.Lemmas.paren_mul_right"
] | [] | true | false | true | false | false | let mul_pow2_diff a n1 n2 =
| Math.paren_mul_right a (pow2 (n1 - n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2 | false |
FStar.UInt128.fst | FStar.UInt128.mod_mul_pow2 | val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) | val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) | let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 536,
"start_col": 0,
"start_line": 532
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> e1: Prims.nat -> e2: Prims.nat
-> FStar.Pervasives.Lemma
(ensures (n % Prims.pow2 e1) * Prims.pow2 e2 <= Prims.pow2 (e1 + e2) - Prims.pow2 e2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.Math.Lemmas.pow2_plus",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.Math.Lemmas.lemma_mult_le_right",
"FStar.Math.Lemmas.lemma_mod_lt"
] | [] | true | false | true | false | false | let mod_mul_pow2 n e1 e2 =
| Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert ((n % pow2 e1) * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2 | false |
FStar.UInt128.fst | FStar.UInt128.pow2_div_bound | val pow2_div_bound (#b: _) (n: UInt.uint_t b) (s: nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) | val pow2_div_bound (#b: _) (n: UInt.uint_t b) (s: nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) | let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 540,
"start_col": 0,
"start_line": 538
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: FStar.UInt.uint_t b -> s: Prims.nat{s <= b}
-> FStar.Pervasives.Lemma (ensures n / Prims.pow2 s < Prims.pow2 (b - s)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.UInt.uint_t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Math.Lemmas.lemma_div_lt",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.op_LessThan",
"Prims.op_Division",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let pow2_div_bound #b (n: UInt.uint_t b) (s: nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) =
| Math.lemma_div_lt n b s | false |
FStar.UInt128.fst | FStar.UInt128.u64_pow2_bound | val u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64 + s)) | val u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64 + s)) | let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 651,
"start_col": 0,
"start_line": 648
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt.uint_t 64 -> s: Prims.nat
-> FStar.Pervasives.Lemma (ensures a * Prims.pow2 s < Prims.pow2 (64 + s)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt.uint_t",
"Prims.nat",
"FStar.Math.Lemmas.lemma_mult_le_right",
"Prims.pow2",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"Prims.l_True",
"Prims.squash",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64 + s)) =
| Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64) | false |
FStar.UInt128.fst | FStar.UInt128.div_plus_multiple | val div_plus_multiple (a b: nat) (k: pos)
: Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) | val div_plus_multiple (a b: nat) (k: pos)
: Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) | let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 566,
"start_col": 0,
"start_line": 562
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.nat -> b: Prims.nat -> k: Prims.pos
-> FStar.Pervasives.Lemma (requires a < k) (ensures (a + b * k) / k == b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.pos",
"FStar.Math.Lemmas.small_division_lemma_1",
"Prims.unit",
"FStar.Math.Lemmas.division_addition_lemma",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let div_plus_multiple (a b: nat) (k: pos)
: Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) =
| Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k | false |
FStar.UInt128.fst | FStar.UInt128.add_mod_small | val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2))) | val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2))) | let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 585,
"start_col": 0,
"start_line": 582
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> m: Prims.nat -> k1: Prims.pos -> k2: Prims.pos
-> FStar.Pervasives.Lemma (requires n < k1)
(ensures n + k1 * m % (k1 * k2) == (n + k1 * m) % (k1 * k2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.pos",
"FStar.UInt128.div_add_small",
"Prims.unit",
"FStar.UInt128.mod_spec",
"Prims.op_Addition",
"FStar.Mul.op_Star"
] | [] | true | false | true | false | false | let add_mod_small n m k1 k2 =
| mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2 | false |
FStar.UInt128.fst | FStar.UInt128.mul_mod_bound | val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) | val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) | let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 641,
"start_col": 0,
"start_line": 633
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 5,
"quake_keep": false,
"quake_lo": 1,
"retry": true,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> s1: Prims.nat -> s2: Prims.nat{s2 >= s1}
-> FStar.Pervasives.Lemma
(ensures n * Prims.pow2 s1 % Prims.pow2 s2 <= Prims.pow2 s2 - Prims.pow2 s1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Math.Lemmas.pow2_plus",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mult_le_right",
"Prims.pow2",
"Prims.op_Modulus",
"FStar.Math.Lemmas.lemma_mod_lt",
"FStar.UInt128.mod_mul"
] | [] | true | false | true | false | false | let mul_mod_bound n s1 s2 =
| mod_mul n (pow2 s1) (pow2 (s2 - s1));
Math.lemma_mod_lt n (pow2 (s2 - s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2 - s1)) (pow2 (s2 - s1) - 1);
Math.pow2_plus (s2 - s1) s1 | false |
FStar.UInt128.fst | FStar.UInt128.add_u64_shift_left | val add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) | val add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) | let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 558,
"start_col": 0,
"start_line": 543
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64}
-> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"FStar.UInt64.add",
"Prims.unit",
"FStar.UInt128.mod_mul_pow2",
"FStar.UInt64.v",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.pow2",
"FStar.UInt128.pow2_div_bound",
"FStar.UInt64.n",
"Prims.eq2",
"Prims.int",
"FStar.UInt128.mod_mul",
"FStar.Math.Lemmas.pow2_plus",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"FStar.UInt.uint_t",
"FStar.UInt64.shift_right",
"FStar.UInt32.sub",
"FStar.UInt128.u32_64",
"FStar.UInt64.shift_left",
"Prims.op_disEquality",
"Prims.op_Equality",
"Prims.op_Addition"
] | [] | false | false | false | false | false | let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
| let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = (U64.v hi % pow2 (64 - s)) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64 - s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64 - s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64 - s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low | false |
FStar.UInt128.fst | FStar.UInt128.shift_t_mod_val | val shift_t_mod_val (a: t) (s: nat{s < 64})
: Lemma
((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) | val shift_t_mod_val (a: t) (s: nat{s < 64})
: Lemma
((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) | let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
() | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 674,
"start_col": 0,
"start_line": 666
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: Prims.nat{s < 64}
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt128.v a * Prims.pow2 s % Prims.pow2 128 ==
FStar.UInt64.v (Mkuint128?.low a) * Prims.pow2 s +
(FStar.UInt64.v (Mkuint128?.high a) * Prims.pow2 64) * Prims.pow2 s % Prims.pow2 128) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.unit",
"FStar.Math.Lemmas.paren_mul_right",
"Prims.pow2",
"FStar.Math.Lemmas.pow2_plus",
"FStar.UInt128.shift_t_mod_val'",
"FStar.UInt.uint_t",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"FStar.UInt128.v",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let shift_t_mod_val (a: t) (s: nat{s < 64})
: Lemma
((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
| let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
() | false |
FStar.UInt128.fst | FStar.UInt128.shift_left_small | val shift_left_small (a: t) (s: U32.t)
: Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) | val shift_left_small (a: t) (s: U32.t)
: Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) | let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 689,
"start_col": 0,
"start_line": 677
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt32.t",
"FStar.UInt32.eq",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"Prims.unit",
"FStar.UInt128.shift_t_mod_val",
"FStar.UInt128.mod_spec_rew_n",
"FStar.Mul.op_Star",
"Prims.pow2",
"FStar.UInt.uint_t",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt32.v",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.shift_left",
"FStar.UInt128.add_u64_shift_left_respec",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt128.v",
"Prims.op_Modulus"
] | [] | false | false | false | false | false | let shift_left_small (a: t) (s: U32.t)
: Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
| if U32.eq s 0ul
then a
else
let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r | false |
FStar.UInt128.fst | FStar.UInt128.mod_then_mul_64 | val mod_then_mul_64 (n: nat) : Lemma ((n % pow2 64) * pow2 64 == n * pow2 64 % pow2 128) | val mod_then_mul_64 (n: nat) : Lemma ((n % pow2 64) * pow2 64 == n * pow2 64 % pow2 128) | let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 589,
"start_col": 0,
"start_line": 587
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat
-> FStar.Pervasives.Lemma
(ensures (n % Prims.pow2 64) * Prims.pow2 64 == n * Prims.pow2 64 % Prims.pow2 128) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.UInt128.mod_mul",
"Prims.pow2",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let mod_then_mul_64 (n: nat) : Lemma ((n % pow2 64) * pow2 64 == n * pow2 64 % pow2 128) =
| Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64) | false |
FStar.UInt128.fst | FStar.UInt128.add_u64_shift_left_respec | val add_u64_shift_left_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
(U64.v lo * pow2 (U32.v s) / pow2 64) * pow2 64)) | val add_u64_shift_left_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
(U64.v lo * pow2 (U32.v s) / pow2 64) * pow2 64)) | let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 612,
"start_col": 0,
"start_line": 593
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64}
-> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.unit",
"FStar.UInt128.mul_abc_to_acb",
"Prims.pow2",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"FStar.UInt64.v",
"Prims.op_Addition",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.op_Subtraction",
"FStar.UInt128.div_pow2_diff",
"FStar.UInt128.mod_then_mul_64",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.UInt.uint_t",
"FStar.UInt128.add_u64_shift_left",
"Prims.op_disEquality"
] | [] | false | false | false | false | false | let add_u64_shift_left_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
(U64.v lo * pow2 (U32.v s) / pow2 64) * pow2 64)) =
| let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64 - s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert ((hi * pow2 s % pow2 64) * pow2 64 == ((hi * pow2 s) * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64 - s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == (hi * pow2 s) * pow2 64 % pow2 128 + (lo * pow2 s / pow2 64) * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r | false |
FStar.UInt128.fst | FStar.UInt128.shift_left_large | val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} | val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} | let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 706,
"start_col": 0,
"start_line": 696
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 5,
"quake_keep": false,
"quake_lo": 1,
"retry": true,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: FStar.UInt32.t{FStar.UInt32.v s >= 64 /\ FStar.UInt32.v s < 128}
-> r:
FStar.UInt128.t
{FStar.UInt128.v r = FStar.UInt128.v a * Prims.pow2 (FStar.UInt32.v s) % Prims.pow2 128} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt128.t",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.op_LessThan",
"Prims.unit",
"FStar.UInt128.shift_left_large_lemma_t",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.pow2",
"Prims.op_Modulus",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.Math.Lemmas.pow2_plus",
"Prims.op_Subtraction",
"FStar.UInt128.mod_mul",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.uint_to_t",
"FStar.UInt64.shift_left",
"FStar.UInt32.sub",
"FStar.UInt128.u32_64",
"Prims.op_Equality",
"FStar.UInt128.v"
] | [] | false | false | false | false | false | let shift_left_large a s =
| let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r | false |
FStar.UInt128.fst | FStar.UInt128.add_mod | val add_mod: a:t -> b:t -> Pure t
(requires True)
(ensures (fun c -> (v a + v b) % pow2 n = v c)) | val add_mod: a:t -> b:t -> Pure t
(requires True)
(ensures (fun c -> (v a + v b) % pow2 n = v c)) | let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 282,
"start_col": 0,
"start_line": 240
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 5,
"quake_keep": false,
"quake_lo": 1,
"retry": true,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.unit",
"FStar.Pervasives.assert_spinoff",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.UInt128.v",
"Prims.pow2",
"Prims._assert",
"Prims.eq2",
"FStar.Mul.op_Star",
"FStar.UInt128.mod_spec_rew_n",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.op_Division",
"FStar.UInt128.mod_add_small",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.UInt128.mod_mul",
"FStar.Math.Lemmas.lemma_mod_plus_distr_l",
"FStar.UInt128.carry_sum_ok",
"FStar.UInt.uint_t",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.add_mod",
"FStar.UInt128.carry",
"FStar.UInt64.t",
"Prims.l_True"
] | [] | false | false | false | false | false | let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
| let l = U64.add_mod a.low b.low in
let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low) } in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc ( == ) {
U64.v r.high * pow2 64;
( == ) { () }
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
( == ) { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
( == ) { () }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % pow2 128;
( == ) { () }
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l) / (pow2 64)) * pow2 64) % pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l) / (pow2 64)) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l) / (pow2 64)) * (pow2 64) + (a_l + b_l) % (pow2 64)
) %
pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r | false |
FStar.UInt128.fst | FStar.UInt128.add_u64_shift_right | val add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) | val add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) | let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 728,
"start_col": 0,
"start_line": 713
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64}
-> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"FStar.UInt64.add",
"Prims.unit",
"FStar.UInt128.mod_mul_pow2",
"FStar.UInt64.v",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.pow2",
"FStar.UInt128.pow2_div_bound",
"FStar.UInt64.n",
"Prims.eq2",
"Prims.int",
"FStar.UInt128.mod_mul",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims.op_Division",
"FStar.UInt.uint_t",
"FStar.UInt64.shift_left",
"FStar.UInt32.sub",
"FStar.UInt128.u32_64",
"FStar.UInt64.shift_right",
"Prims.op_disEquality",
"Prims.op_Addition"
] | [] | false | false | false | false | false | let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
| let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = (U64.v hi % pow2 s) * pow2 (64 - s) in
Math.pow2_plus (64 - s) s;
mod_mul (U64.v hi) (pow2 (64 - s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high | false |
FStar.UInt128.fst | FStar.UInt128.u128_div_pow2 | val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) | val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) | let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 84,
"end_line": 771,
"start_col": 0,
"start_line": 768
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) : | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: Prims.nat{s < 64}
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt128.v a / Prims.pow2 s ==
FStar.UInt64.v (Mkuint128?.low a) / Prims.pow2 s +
FStar.UInt64.v (Mkuint128?.high a) * Prims.pow2 (64 - s)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Math.Lemmas.division_addition_lemma",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims.pow2",
"FStar.Mul.op_Star",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.pow2_plus"
] | [] | true | false | true | false | false | let u128_div_pow2 a s =
| Math.pow2_plus (64 - s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64 - s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) | false |
FStar.UInt128.fst | FStar.UInt128.div_add_small | val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) | val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) | let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 576,
"start_col": 0,
"start_line": 571
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> m: Prims.nat -> k1: Prims.pos -> k2: Prims.pos
-> FStar.Pervasives.Lemma (requires n < k1)
(ensures k1 * m / (k1 * k2) == (n + k1 * m) / (k1 * k2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.pos",
"FStar.UInt128.div_plus_multiple",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"FStar.Mul.op_Star",
"FStar.UInt128.mul_div_cancel",
"FStar.UInt128.div_product",
"Prims.op_Addition"
] | [] | true | false | true | false | false | let div_add_small n m k1 k2 =
| div_product (k1 * m) k1 k2;
div_product (n + k1 * m) k1 k2;
mul_div_cancel m k1;
assert (k1 * m / k1 == m);
div_plus_multiple n m k1 | false |
FStar.UInt128.fst | FStar.UInt128.shift_right_reconstruct | val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) | val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) | let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
() | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 764,
"start_col": 0,
"start_line": 758
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a_h: FStar.UInt.uint_t 64 -> s: Prims.nat{s < 64}
-> FStar.Pervasives.Lemma
(ensures
a_h * Prims.pow2 (64 - s) ==
(a_h / Prims.pow2 s) * Prims.pow2 64 + a_h * Prims.pow2 64 / Prims.pow2 s % Prims.pow2 64) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.pow2",
"FStar.UInt128.mul_div_cancel",
"FStar.UInt128.div_product_comm",
"FStar.UInt128.mod_spec_rew_n",
"Prims.op_Subtraction",
"FStar.UInt128.mul_pow2_diff"
] | [] | true | false | true | false | false | let shift_right_reconstruct a_h s =
| mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64 - s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert ((a_h / pow2 s) * pow2 64 == (a_h * pow2 64 / pow2 s / pow2 64) * pow2 64);
() | false |
FStar.UInt128.fst | FStar.UInt128.shift_left | val shift_left: a:t -> s:UInt32.t -> Pure t
(requires (U32.v s < n))
(ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) | val shift_left: a:t -> s:UInt32.t -> Pure t
(requires (U32.v s < n))
(ensures (fun c -> v c = ((v a * pow2 (UInt32.v s)) % pow2 n))) | let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 711,
"start_col": 0,
"start_line": 709
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt32.t",
"FStar.UInt32.lt",
"FStar.UInt128.u32_64",
"FStar.UInt128.shift_left_small",
"Prims.bool",
"FStar.UInt128.shift_left_large"
] | [] | false | false | false | false | false | let shift_left a s =
| if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s | false |
FStar.UInt128.fst | FStar.UInt128.div_product_comm | val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1) | val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1) | let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 754,
"start_col": 0,
"start_line": 752
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n1: Prims.nat -> k1: Prims.pos -> k2: Prims.pos
-> FStar.Pervasives.Lemma (ensures n1 / k1 / k2 == n1 / k2 / k1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.pos",
"FStar.UInt128.div_product",
"Prims.unit"
] | [] | true | false | true | false | false | let div_product_comm n1 k1 k2 =
| div_product n1 k1 k2;
div_product n1 k2 k1 | false |
FStar.UInt128.fst | FStar.UInt128.shift_right_small | val shift_right_small (a: t) (s: U32.t{U32.v s < 64})
: Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) | val shift_right_small (a: t) (s: U32.t{U32.v s < 64})
: Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) | let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 786,
"start_col": 0,
"start_line": 773
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64} -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"FStar.UInt32.eq",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"Prims.unit",
"FStar.UInt128.u128_div_pow2",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.UInt128.v",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.op_Division",
"FStar.UInt128.shift_right_reconstruct",
"FStar.UInt.uint_t",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt128.__proj__Mkuint128__item__high",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt128.add_u64_shift_right_respec",
"FStar.UInt64.shift_right",
"Prims.l_True"
] | [] | false | false | false | false | false | let shift_right_small (a: t) (s: U32.t{U32.v s < 64})
: Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) =
| if U32.eq s 0ul
then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64 - s) + a_l / pow2 s);
u128_div_pow2 a s;
r | false |
FStar.UInt128.fst | FStar.UInt128.add_u64_shift_right_respec | val add_u64_shift_right_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r ->
U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) | val add_u64_shift_right_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r ->
U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) | let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 744,
"start_col": 0,
"start_line": 737
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> s: FStar.UInt32.t{FStar.UInt32.v s < 64}
-> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.unit",
"FStar.UInt128.mul_pow2_diff",
"FStar.UInt64.v",
"FStar.UInt.uint_t",
"FStar.UInt128.add_u64_shift_right",
"Prims.op_disEquality",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.pow2",
"Prims.op_Modulus",
"FStar.Mul.op_Star"
] | [] | false | false | false | false | false | let add_u64_shift_right_respec (hi lo: U64.t) (s: U32.t{U32.v s < 64})
: Pure U64.t
(requires (U32.v s <> 0))
(ensures
(fun r ->
U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
| let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r | false |
FStar.UInt128.fst | FStar.UInt128.shift_right | val shift_right: a:t -> s:UInt32.t -> Pure t
(requires (U32.v s < n))
(ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) | val shift_right: a:t -> s:UInt32.t -> Pure t
(requires (U32.v s < n))
(ensures (fun c -> v c = (v a / (pow2 (UInt32.v s))))) | let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 805,
"start_col": 0,
"start_line": 800
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt32.t",
"FStar.UInt32.lt",
"FStar.UInt128.u32_64",
"FStar.UInt128.shift_right_small",
"Prims.bool",
"FStar.UInt128.shift_right_large",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.eq2",
"Prims.int",
"FStar.UInt128.v",
"Prims.op_Division",
"Prims.pow2"
] | [] | false | false | false | false | false | let shift_right (a: t) (s: U32.t)
: Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) =
| if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s | false |
FStar.UInt128.fst | FStar.UInt128.shift_right_large | val shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128})
: Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) | val shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128})
: Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) | let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 798,
"start_col": 0,
"start_line": 788
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: FStar.UInt32.t{FStar.UInt32.v s >= 64 /\ FStar.UInt32.v s < 128}
-> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.op_LessThan",
"Prims.unit",
"FStar.UInt128.div_plus_multiple",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.pow2",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"FStar.UInt128.v",
"Prims.op_Subtraction",
"FStar.UInt128.div_product",
"FStar.Math.Lemmas.pow2_plus",
"FStar.UInt.uint_t",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.shift_right",
"FStar.UInt32.sub",
"FStar.UInt128.u32_64",
"FStar.UInt64.uint_to_t",
"Prims.l_True"
] | [] | false | false | false | false | false | let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128})
: Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) =
| let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64) } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r | false |
FStar.UInt128.fst | FStar.UInt128.gte | val gte (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == gte #n (v a) (v b))) | val gte (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == gte #n (v a) (v b))) | let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 63,
"end_line": 813,
"start_col": 0,
"start_line": 812
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high || | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.op_BarBar",
"FStar.UInt64.gt",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.op_AmpAmp",
"FStar.UInt64.eq",
"FStar.UInt64.gte",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims.bool"
] | [] | false | false | false | false | false | let gte (a b: t) =
| U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) | false |
FStar.UInt128.fst | FStar.UInt128.gt | val gt (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == gt #n (v a) (v b))) | val gt (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == gt #n (v a) (v b))) | let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 809,
"start_col": 0,
"start_line": 808
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.op_BarBar",
"FStar.UInt64.gt",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.op_AmpAmp",
"FStar.UInt64.eq",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims.bool"
] | [] | false | false | false | false | false | let gt (a b: t) =
| U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) | false |
FStar.UInt128.fst | FStar.UInt128.lt | val lt (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == lt #n (v a) (v b))) | val lt (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == lt #n (v a) (v b))) | let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 811,
"start_col": 0,
"start_line": 810
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high || | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.op_BarBar",
"FStar.UInt64.lt",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.op_AmpAmp",
"FStar.UInt64.eq",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims.bool"
] | [] | false | false | false | false | false | let lt (a b: t) =
| U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) | false |
FStar.UInt128.fst | FStar.UInt128.pll_l | val pll_l (x y: U64.t) : UInt.uint_t 32 | val pll_l (x y: U64.t) : UInt.uint_t 32 | let pll_l (x y: U64.t) : UInt.uint_t 32 =
l32 (pll x y) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 986,
"start_col": 0,
"start_line": 985
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)]
let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
let gte_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high)
(U64.lognot (U64.eq_mask a.high b.high)) in
let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high)
(U64.gte_mask a.low b.low) in
let mask = U64.logor mask_hi_gte mask_lo_gte in
gte_characterization a b;
lt_characterization a b;
{ low = mask; high = mask; }
let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; }
let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low
inline_for_extraction
let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
let u64_mod_32 (a: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r = U64.v a % pow2 32)) =
UInt.logand_mask (U64.v a) 32;
U64.logand a u64_l32_mask
let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) =
div_mod (U64.v a) (pow2 32)
val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 ->
Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y)
let mul32_digits x y = ()
let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32
#push-options "--z3rlimit 30"
let u32_combine (hi lo: U64.t) : Pure U64.t
(requires (U64.v lo < pow2 32))
(ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) =
U64.add lo (U64.shift_left hi u32_32)
#pop-options
let product_bound (a b:nat) (k:pos) :
Lemma (requires (a < k /\ b < k))
(ensures a * b <= k * k - 2*k + 1) =
Math.lemma_mult_le_right b a (k-1);
Math.lemma_mult_le_left (k-1) b (k-1)
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n ->
Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
let uint_product_bound #n a b =
product_bound a b (pow2 n);
Math.pow2_plus n n
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} ->
Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
let u32_product_bound a b =
uint_product_bound #32 a b
let mul32 x y =
let x0 = u64_mod_32 x in
let x1 = U64.shift_right x u32_32 in
u32_product_bound (U64.v x0) (U32.v y);
let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in
let x0yl = u64_mod_32 x0y in
let x0yh = U64.shift_right x0y u32_32 in
u32_product_bound (U64.v x1) (U32.v y);
// not in the original C code
let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in
let x1y = U64.add x1y' x0yh in
// correspondence with C:
// r0 = r.low
// r0 is written using u32_combine hi lo = lo + hi << 32
// r1 = r.high
let r = { low = u32_combine x1y x0yl;
high = U64.shift_right x1y u32_32; } in
u64_32_digits x;
//assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0);
assert (U64.v x0y == U64.v x0 * U32.v y);
u64_32_digits x0y;
//assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl);
assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y);
mul32_digits (U64.v x) (U32.v y);
assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y);
r
let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32
let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32
val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 ->
n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y}
let mul32_bound x y =
u32_product_bound x y;
x * y
let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (l32 (U64.v x)) (l32 (U64.v y))
let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (l32 (U64.v x)) (h32 (U64.v y))
let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (h32 (U64.v x)) (l32 (U64.v y))
let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.UInt.uint_t 32 | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt128.l32",
"FStar.UInt128.pll",
"FStar.UInt.uint_t"
] | [] | false | false | false | false | false | let pll_l (x y: U64.t) : UInt.uint_t 32 =
| l32 (pll x y) | false |
FStar.UInt128.fst | FStar.UInt128.pll_h | val pll_h (x y: U64.t) : UInt.uint_t 32 | val pll_h (x y: U64.t) : UInt.uint_t 32 | let pll_h (x y: U64.t) : UInt.uint_t 32 =
h32 (pll x y) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 988,
"start_col": 0,
"start_line": 987
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)]
let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
let gte_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high)
(U64.lognot (U64.eq_mask a.high b.high)) in
let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high)
(U64.gte_mask a.low b.low) in
let mask = U64.logor mask_hi_gte mask_lo_gte in
gte_characterization a b;
lt_characterization a b;
{ low = mask; high = mask; }
let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; }
let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low
inline_for_extraction
let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
let u64_mod_32 (a: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r = U64.v a % pow2 32)) =
UInt.logand_mask (U64.v a) 32;
U64.logand a u64_l32_mask
let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) =
div_mod (U64.v a) (pow2 32)
val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 ->
Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y)
let mul32_digits x y = ()
let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32
#push-options "--z3rlimit 30"
let u32_combine (hi lo: U64.t) : Pure U64.t
(requires (U64.v lo < pow2 32))
(ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) =
U64.add lo (U64.shift_left hi u32_32)
#pop-options
let product_bound (a b:nat) (k:pos) :
Lemma (requires (a < k /\ b < k))
(ensures a * b <= k * k - 2*k + 1) =
Math.lemma_mult_le_right b a (k-1);
Math.lemma_mult_le_left (k-1) b (k-1)
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n ->
Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
let uint_product_bound #n a b =
product_bound a b (pow2 n);
Math.pow2_plus n n
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} ->
Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
let u32_product_bound a b =
uint_product_bound #32 a b
let mul32 x y =
let x0 = u64_mod_32 x in
let x1 = U64.shift_right x u32_32 in
u32_product_bound (U64.v x0) (U32.v y);
let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in
let x0yl = u64_mod_32 x0y in
let x0yh = U64.shift_right x0y u32_32 in
u32_product_bound (U64.v x1) (U32.v y);
// not in the original C code
let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in
let x1y = U64.add x1y' x0yh in
// correspondence with C:
// r0 = r.low
// r0 is written using u32_combine hi lo = lo + hi << 32
// r1 = r.high
let r = { low = u32_combine x1y x0yl;
high = U64.shift_right x1y u32_32; } in
u64_32_digits x;
//assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0);
assert (U64.v x0y == U64.v x0 * U32.v y);
u64_32_digits x0y;
//assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl);
assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y);
mul32_digits (U64.v x) (U32.v y);
assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y);
r
let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32
let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32
val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 ->
n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y}
let mul32_bound x y =
u32_product_bound x y;
x * y
let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (l32 (U64.v x)) (l32 (U64.v y))
let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (l32 (U64.v x)) (h32 (U64.v y))
let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (h32 (U64.v x)) (l32 (U64.v y))
let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (h32 (U64.v x)) (h32 (U64.v y))
let pll_l (x y: U64.t) : UInt.uint_t 32 = | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.UInt.uint_t 32 | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt128.h32",
"FStar.UInt128.pll",
"FStar.UInt.uint_t"
] | [] | false | false | false | false | false | let pll_h (x y: U64.t) : UInt.uint_t 32 =
| h32 (pll x y) | false |
FStar.UInt128.fst | FStar.UInt128.u64_logand_comm | val u64_logand_comm (a b: U64.t) : Lemma (U64.logand a b == U64.logand b a) | val u64_logand_comm (a b: U64.t) : Lemma (U64.logand a b == U64.logand b a) | let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 818,
"start_col": 0,
"start_line": 817
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t
-> FStar.Pervasives.Lemma (ensures FStar.UInt64.logand a b == FStar.UInt64.logand b a) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.logand_commutative",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"FStar.UInt64.logand",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let u64_logand_comm (a b: U64.t) : Lemma (U64.logand a b == U64.logand b a) =
| UInt.logand_commutative (U64.v a) (U64.v b) | false |
FStar.UInt128.fst | FStar.UInt128.u64_and_0 | val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] | val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] | let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 823,
"start_col": 0,
"start_line": 823
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures FStar.UInt64.v b = 0 ==> FStar.UInt64.v (FStar.UInt64.logand a b) = 0)
[SMTPat (FStar.UInt64.logand a b)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.logand_lemma_1",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.unit"
] | [] | true | false | true | false | false | let u64_and_0 a b =
| UInt.logand_lemma_1 (U64.v a) | false |
FStar.UInt128.fst | FStar.UInt128.eq | val eq (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == eq #n (v a) (v b))) | val eq (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == eq #n (v a) (v b))) | let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 59,
"end_line": 807,
"start_col": 0,
"start_line": 807
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.op_AmpAmp",
"FStar.UInt64.eq",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.bool"
] | [] | false | false | false | false | false | let eq (a b: t) =
| U64.eq a.low b.low && U64.eq a.high b.high | false |
FStar.UInt128.fst | FStar.UInt128.u64_0_and | val u64_0_and (a b: U64.t)
: Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] | val u64_0_and (a b: U64.t)
: Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] | let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 828,
"start_col": 0,
"start_line": 825
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures FStar.UInt64.v a = 0 ==> FStar.UInt64.v (FStar.UInt64.logand a b) = 0)
[SMTPat (FStar.UInt64.logand a b)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt128.u64_logand_comm",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt64.v",
"FStar.UInt64.logand",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let u64_0_and (a b: U64.t)
: Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] =
| u64_logand_comm a b | false |
FStar.UInt128.fst | FStar.UInt128.shift_t_val | val shift_t_val (a: t) (s: nat)
: Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s)) | val shift_t_val (a: t) (s: nat)
: Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s)) | let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
() | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 626,
"start_col": 0,
"start_line": 623
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 5,
"quake_keep": false,
"quake_lo": 1,
"retry": true,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> s: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt128.v a * Prims.pow2 s ==
FStar.UInt64.v (Mkuint128?.low a) * Prims.pow2 s +
FStar.UInt64.v (Mkuint128?.high a) * Prims.pow2 (64 + s)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt128.t",
"Prims.nat",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"FStar.UInt128.v",
"Prims.pow2",
"Prims.op_Addition",
"FStar.UInt64.v",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let shift_t_val (a: t) (s: nat)
: Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64 + s)) =
| Math.pow2_plus 64 s;
() | false |
FStar.UInt128.fst | FStar.UInt128.u64_or_1 | val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] | val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] | let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 859,
"start_col": 0,
"start_line": 859
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt64.v b = Prims.pow2 64 - 1 ==>
FStar.UInt64.v (FStar.UInt64.logor a b) = Prims.pow2 64 - 1)
[SMTPat (FStar.UInt64.logor a b)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.logor_lemma_2",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.unit"
] | [] | true | false | true | false | false | let u64_or_1 a b =
| UInt.logor_lemma_2 (U64.v a) | false |
FStar.UInt128.fst | FStar.UInt128.u64_not_1 | val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)] | val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)] | let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 64,
"end_line": 880,
"start_col": 0,
"start_line": 879
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures FStar.UInt64.v a = Prims.pow2 64 - 1 ==> FStar.UInt64.v (FStar.UInt64.lognot a) = 0)
[SMTPat (FStar.UInt64.lognot a)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.nth_lemma",
"FStar.UInt.lognot",
"FStar.UInt.ones",
"FStar.UInt.zero",
"Prims.unit"
] | [] | true | false | true | false | false | let u64_not_1 a =
| UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) | false |
FStar.UInt128.fst | FStar.UInt128.lte | val lte (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == lte #n (v a) (v b))) | val lte (a:t) (b:t) : Pure bool
(requires True)
(ensures (fun r -> r == lte #n (v a) (v b))) | let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 63,
"end_line": 815,
"start_col": 0,
"start_line": 814
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high || | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t -> Prims.Pure Prims.bool | Prims.Pure | [] | [] | [
"FStar.UInt128.t",
"Prims.op_BarBar",
"FStar.UInt64.lt",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.op_AmpAmp",
"FStar.UInt64.eq",
"FStar.UInt64.lte",
"FStar.UInt128.__proj__Mkuint128__item__low",
"Prims.bool"
] | [] | false | false | false | false | false | let lte (a b: t) =
| U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) | false |
FStar.UInt128.fst | FStar.UInt128.u64_1s_and | val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)] | val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)] | let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 834,
"start_col": 0,
"start_line": 834
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt64.v a = Prims.pow2 64 - 1 /\ FStar.UInt64.v b = Prims.pow2 64 - 1 ==>
FStar.UInt64.v (FStar.UInt64.logand a b) = Prims.pow2 64 - 1)
[SMTPat (FStar.UInt64.logand a b)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.logand_lemma_2",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.unit"
] | [] | true | false | true | false | false | let u64_1s_and a b =
| UInt.logand_lemma_2 (U64.v a) | false |
FStar.UInt128.fst | FStar.UInt128.u64_not_0 | val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)] | val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)] | let u64_not_0 a = UInt.lognot_lemma_1 #64 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 874,
"start_col": 0,
"start_line": 874
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures FStar.UInt64.v a = 0 ==> FStar.UInt64.v (FStar.UInt64.lognot a) = Prims.pow2 64 - 1)
[SMTPat (FStar.UInt64.lognot a)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.lognot_lemma_1",
"Prims.unit"
] | [] | true | false | true | false | false | let u64_not_0 a =
| UInt.lognot_lemma_1 #64 | false |
FStar.UInt128.fst | FStar.UInt128.u64_or_0 | val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)] | val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)] | let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 869,
"start_col": 0,
"start_line": 869
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt64.v a = 0 /\ FStar.UInt64.v b = 0 ==> FStar.UInt64.v (FStar.UInt64.logor a b) = 0
) [SMTPat (FStar.UInt64.logor a b)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.logor_lemma_1",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.unit"
] | [] | true | false | true | false | false | let u64_or_0 a b =
| UInt.logor_lemma_1 (U64.v a) | false |
FStar.UInt128.fst | FStar.UInt128.u64_1_or | val u64_1_or (a b: U64.t)
: Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] | val u64_1_or (a b: U64.t)
: Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] | let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 864,
"start_col": 0,
"start_line": 861
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt64.v a = Prims.pow2 64 - 1 ==>
FStar.UInt64.v (FStar.UInt64.logor a b) = Prims.pow2 64 - 1)
[SMTPat (FStar.UInt64.logor a b)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt128.u64_logor_comm",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt64.v",
"Prims.op_Subtraction",
"Prims.pow2",
"FStar.UInt64.logor",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let u64_1_or (a b: U64.t)
: Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] =
| u64_logor_comm a b | false |
FStar.UInt128.fst | FStar.UInt128.uint128_to_uint64 | val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} | val uint128_to_uint64: a:t -> b:U64.t{U64.v b == v a % pow2 64} | let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 71,
"end_line": 896,
"start_col": 0,
"start_line": 896
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)]
let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
let gte_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high)
(U64.lognot (U64.eq_mask a.high b.high)) in
let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high)
(U64.gte_mask a.low b.low) in
let mask = U64.logor mask_hi_gte mask_lo_gte in
gte_characterization a b;
lt_characterization a b;
{ low = mask; high = mask; }
let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt64.t{FStar.UInt64.v b == FStar.UInt128.v a % Prims.pow2 64} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt128.t",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt64.t",
"Prims.eq2",
"Prims.int",
"FStar.UInt64.v",
"Prims.op_Modulus",
"FStar.UInt128.v",
"Prims.pow2"
] | [] | false | false | false | false | false | let uint128_to_uint64 (a: t) : b: U64.t{U64.v b == v a % pow2 64} =
| a.low | false |
FStar.UInt128.fst | FStar.UInt128.u64_logor_comm | val u64_logor_comm (a b: U64.t) : Lemma (U64.logor a b == U64.logor b a) | val u64_logor_comm (a b: U64.t) : Lemma (U64.logor a b == U64.logor b a) | let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 854,
"start_col": 0,
"start_line": 853
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t
-> FStar.Pervasives.Lemma (ensures FStar.UInt64.logor a b == FStar.UInt64.logor b a) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.logor_commutative",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"FStar.UInt64.logor",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let u64_logor_comm (a b: U64.t) : Lemma (U64.logor a b == U64.logor b a) =
| UInt.logor_commutative (U64.v a) (U64.v b) | false |
FStar.UInt128.fst | FStar.UInt128.eq_mask | val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) | val eq_mask: a:t -> b:t -> Tot (c:t{(v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)}) | let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; } | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 841,
"start_col": 0,
"start_line": 836
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt128.t -> b: FStar.UInt128.t
-> c:
FStar.UInt128.t
{ (FStar.UInt128.v a = FStar.UInt128.v b ==>
FStar.UInt128.v c = Prims.pow2 FStar.UInt128.n - 1) /\
(FStar.UInt128.v a <> FStar.UInt128.v b ==> FStar.UInt128.v c = 0) } | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt128.t",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.t",
"FStar.UInt64.logand",
"FStar.UInt64.eq_mask",
"FStar.UInt128.__proj__Mkuint128__item__low",
"FStar.UInt128.__proj__Mkuint128__item__high",
"Prims.l_True",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt.uint_t",
"FStar.UInt128.n",
"FStar.UInt128.v",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_disEquality"
] | [] | false | false | false | false | false | let eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
| let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in
{ low = mask; high = mask } | false |
FStar.UInt128.fst | FStar.UInt128.l32 | val l32 (x: UInt.uint_t 64) : UInt.uint_t 32 | val l32 (x: UInt.uint_t 64) : UInt.uint_t 32 | let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 967,
"start_col": 0,
"start_line": 967
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)]
let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
let gte_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high)
(U64.lognot (U64.eq_mask a.high b.high)) in
let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high)
(U64.gte_mask a.low b.low) in
let mask = U64.logor mask_hi_gte mask_lo_gte in
gte_characterization a b;
lt_characterization a b;
{ low = mask; high = mask; }
let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; }
let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low
inline_for_extraction
let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
let u64_mod_32 (a: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r = U64.v a % pow2 32)) =
UInt.logand_mask (U64.v a) 32;
U64.logand a u64_l32_mask
let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) =
div_mod (U64.v a) (pow2 32)
val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 ->
Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y)
let mul32_digits x y = ()
let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32
#push-options "--z3rlimit 30"
let u32_combine (hi lo: U64.t) : Pure U64.t
(requires (U64.v lo < pow2 32))
(ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) =
U64.add lo (U64.shift_left hi u32_32)
#pop-options
let product_bound (a b:nat) (k:pos) :
Lemma (requires (a < k /\ b < k))
(ensures a * b <= k * k - 2*k + 1) =
Math.lemma_mult_le_right b a (k-1);
Math.lemma_mult_le_left (k-1) b (k-1)
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n ->
Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
let uint_product_bound #n a b =
product_bound a b (pow2 n);
Math.pow2_plus n n
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} ->
Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
let u32_product_bound a b =
uint_product_bound #32 a b
let mul32 x y =
let x0 = u64_mod_32 x in
let x1 = U64.shift_right x u32_32 in
u32_product_bound (U64.v x0) (U32.v y);
let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in
let x0yl = u64_mod_32 x0y in
let x0yh = U64.shift_right x0y u32_32 in
u32_product_bound (U64.v x1) (U32.v y);
// not in the original C code
let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in
let x1y = U64.add x1y' x0yh in
// correspondence with C:
// r0 = r.low
// r0 is written using u32_combine hi lo = lo + hi << 32
// r1 = r.high
let r = { low = u32_combine x1y x0yl;
high = U64.shift_right x1y u32_32; } in
u64_32_digits x;
//assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0);
assert (U64.v x0y == U64.v x0 * U32.v y);
u64_32_digits x0y;
//assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl);
assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y);
mul32_digits (U64.v x) (U32.v y);
assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y);
r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt.uint_t 64 -> FStar.UInt.uint_t 32 | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt.uint_t",
"Prims.op_Modulus",
"Prims.pow2"
] | [] | false | false | false | false | false | let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 =
| x % pow2 32 | false |
FStar.UInt128.fst | FStar.UInt128.phh | val phh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} | val phh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} | let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 983,
"start_col": 0,
"start_line": 982
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)]
let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
let gte_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high)
(U64.lognot (U64.eq_mask a.high b.high)) in
let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high)
(U64.gte_mask a.low b.low) in
let mask = U64.logor mask_hi_gte mask_lo_gte in
gte_characterization a b;
lt_characterization a b;
{ low = mask; high = mask; }
let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; }
let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low
inline_for_extraction
let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
let u64_mod_32 (a: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r = U64.v a % pow2 32)) =
UInt.logand_mask (U64.v a) 32;
U64.logand a u64_l32_mask
let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) =
div_mod (U64.v a) (pow2 32)
val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 ->
Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y)
let mul32_digits x y = ()
let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32
#push-options "--z3rlimit 30"
let u32_combine (hi lo: U64.t) : Pure U64.t
(requires (U64.v lo < pow2 32))
(ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) =
U64.add lo (U64.shift_left hi u32_32)
#pop-options
let product_bound (a b:nat) (k:pos) :
Lemma (requires (a < k /\ b < k))
(ensures a * b <= k * k - 2*k + 1) =
Math.lemma_mult_le_right b a (k-1);
Math.lemma_mult_le_left (k-1) b (k-1)
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n ->
Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
let uint_product_bound #n a b =
product_bound a b (pow2 n);
Math.pow2_plus n n
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} ->
Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
let u32_product_bound a b =
uint_product_bound #32 a b
let mul32 x y =
let x0 = u64_mod_32 x in
let x1 = U64.shift_right x u32_32 in
u32_product_bound (U64.v x0) (U32.v y);
let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in
let x0yl = u64_mod_32 x0y in
let x0yh = U64.shift_right x0y u32_32 in
u32_product_bound (U64.v x1) (U32.v y);
// not in the original C code
let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in
let x1y = U64.add x1y' x0yh in
// correspondence with C:
// r0 = r.low
// r0 is written using u32_combine hi lo = lo + hi << 32
// r1 = r.high
let r = { low = u32_combine x1y x0yl;
high = U64.shift_right x1y u32_32; } in
u64_32_digits x;
//assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0);
assert (U64.v x0y == U64.v x0 * U32.v y);
u64_32_digits x0y;
//assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl);
assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y);
mul32_digits (U64.v x) (U32.v y);
assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y);
r
let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32
let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32
val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 ->
n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y}
let mul32_bound x y =
u32_product_bound x y;
x * y
let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (l32 (U64.v x)) (l32 (U64.v y))
let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
mul32_bound (l32 (U64.v x)) (h32 (U64.v y))
let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt64.t -> y: FStar.UInt64.t
-> n: FStar.UInt.uint_t 64 {n < Prims.pow2 64 - Prims.pow2 32 - 1} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt128.mul32_bound",
"FStar.UInt128.h32",
"FStar.UInt64.v",
"FStar.UInt.uint_t",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"Prims.pow2"
] | [] | false | false | false | false | false | let phh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} =
| mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) | false |
FStar.UInt128.fst | FStar.UInt128.h32 | val h32 (x: UInt.uint_t 64) : UInt.uint_t 32 | val h32 (x: UInt.uint_t 64) : UInt.uint_t 32 | let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 968,
"start_col": 0,
"start_line": 968
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)]
let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
let gte_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high)
(U64.lognot (U64.eq_mask a.high b.high)) in
let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high)
(U64.gte_mask a.low b.low) in
let mask = U64.logor mask_hi_gte mask_lo_gte in
gte_characterization a b;
lt_characterization a b;
{ low = mask; high = mask; }
let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; }
let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low
inline_for_extraction
let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
let u64_mod_32 (a: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r = U64.v a % pow2 32)) =
UInt.logand_mask (U64.v a) 32;
U64.logand a u64_l32_mask
let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) =
div_mod (U64.v a) (pow2 32)
val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 ->
Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y)
let mul32_digits x y = ()
let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32
#push-options "--z3rlimit 30"
let u32_combine (hi lo: U64.t) : Pure U64.t
(requires (U64.v lo < pow2 32))
(ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) =
U64.add lo (U64.shift_left hi u32_32)
#pop-options
let product_bound (a b:nat) (k:pos) :
Lemma (requires (a < k /\ b < k))
(ensures a * b <= k * k - 2*k + 1) =
Math.lemma_mult_le_right b a (k-1);
Math.lemma_mult_le_left (k-1) b (k-1)
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n ->
Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
let uint_product_bound #n a b =
product_bound a b (pow2 n);
Math.pow2_plus n n
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} ->
Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
let u32_product_bound a b =
uint_product_bound #32 a b
let mul32 x y =
let x0 = u64_mod_32 x in
let x1 = U64.shift_right x u32_32 in
u32_product_bound (U64.v x0) (U32.v y);
let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in
let x0yl = u64_mod_32 x0y in
let x0yh = U64.shift_right x0y u32_32 in
u32_product_bound (U64.v x1) (U32.v y);
// not in the original C code
let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in
let x1y = U64.add x1y' x0yh in
// correspondence with C:
// r0 = r.low
// r0 is written using u32_combine hi lo = lo + hi << 32
// r1 = r.high
let r = { low = u32_combine x1y x0yl;
high = U64.shift_right x1y u32_32; } in
u64_32_digits x;
//assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0);
assert (U64.v x0y == U64.v x0 * U32.v y);
u64_32_digits x0y;
//assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl);
assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y);
mul32_digits (U64.v x) (U32.v y);
assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y);
r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt.uint_t 64 -> FStar.UInt.uint_t 32 | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt.uint_t",
"Prims.op_Division",
"Prims.pow2"
] | [] | false | false | false | false | false | let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 =
| x / pow2 32 | false |
FStar.UInt128.fst | FStar.UInt128.mul32 | val mul32: x:U64.t -> y:U32.t -> Pure t
(requires True)
(ensures (fun r -> v r == U64.v x * U32.v y)) | val mul32: x:U64.t -> y:U32.t -> Pure t
(requires True)
(ensures (fun r -> v r == U64.v x * U32.v y)) | let mul32 x y =
let x0 = u64_mod_32 x in
let x1 = U64.shift_right x u32_32 in
u32_product_bound (U64.v x0) (U32.v y);
let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in
let x0yl = u64_mod_32 x0y in
let x0yh = U64.shift_right x0y u32_32 in
u32_product_bound (U64.v x1) (U32.v y);
// not in the original C code
let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in
let x1y = U64.add x1y' x0yh in
// correspondence with C:
// r0 = r.low
// r0 is written using u32_combine hi lo = lo + hi << 32
// r1 = r.high
let r = { low = u32_combine x1y x0yl;
high = U64.shift_right x1y u32_32; } in
u64_32_digits x;
//assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0);
assert (U64.v x0y == U64.v x0 * U32.v y);
u64_32_digits x0y;
//assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl);
assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y);
mul32_digits (U64.v x) (U32.v y);
assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y);
r | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 965,
"start_col": 0,
"start_line": 940
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)]
let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
let gte_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high)
(U64.lognot (U64.eq_mask a.high b.high)) in
let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high)
(U64.gte_mask a.low b.low) in
let mask = U64.logor mask_hi_gte mask_lo_gte in
gte_characterization a b;
lt_characterization a b;
{ low = mask; high = mask; }
let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; }
let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low
inline_for_extraction
let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
let u64_mod_32 (a: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r = U64.v a % pow2 32)) =
UInt.logand_mask (U64.v a) 32;
U64.logand a u64_l32_mask
let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) =
div_mod (U64.v a) (pow2 32)
val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 ->
Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y)
let mul32_digits x y = ()
let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32
#push-options "--z3rlimit 30"
let u32_combine (hi lo: U64.t) : Pure U64.t
(requires (U64.v lo < pow2 32))
(ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) =
U64.add lo (U64.shift_left hi u32_32)
#pop-options
let product_bound (a b:nat) (k:pos) :
Lemma (requires (a < k /\ b < k))
(ensures a * b <= k * k - 2*k + 1) =
Math.lemma_mult_le_right b a (k-1);
Math.lemma_mult_le_left (k-1) b (k-1)
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n ->
Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
let uint_product_bound #n a b =
product_bound a b (pow2 n);
Math.pow2_plus n n
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} ->
Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
let u32_product_bound a b =
uint_product_bound #32 a b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt64.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt128.t | Prims.Pure | [] | [] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"FStar.UInt64.v",
"FStar.UInt32.v",
"Prims.op_Addition",
"Prims.pow2",
"FStar.UInt128.mul32_digits",
"Prims.op_Division",
"FStar.UInt128.u64_32_digits",
"FStar.UInt128.uint128",
"FStar.UInt128.Mkuint128",
"FStar.UInt128.u32_combine",
"FStar.UInt64.shift_right",
"FStar.UInt128.u32_32",
"FStar.UInt64.add",
"FStar.UInt64.mul",
"FStar.Int.Cast.uint32_to_uint64",
"FStar.UInt128.u32_product_bound",
"FStar.UInt128.u64_mod_32",
"FStar.UInt128.t"
] | [] | false | false | false | false | false | let mul32 x y =
| let x0 = u64_mod_32 x in
let x1 = U64.shift_right x u32_32 in
u32_product_bound (U64.v x0) (U32.v y);
let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in
let x0yl = u64_mod_32 x0y in
let x0yh = U64.shift_right x0y u32_32 in
u32_product_bound (U64.v x1) (U32.v y);
let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in
let x1y = U64.add x1y' x0yh in
let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32 } in
u64_32_digits x;
assert (U64.v x0y == U64.v x0 * U32.v y);
u64_32_digits x0y;
assert (U64.v x1y' == (U64.v x / pow2 32) * U32.v y);
mul32_digits (U64.v x) (U32.v y);
assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y);
r | false |
FStar.UInt128.fst | FStar.UInt128.uint64_to_uint128 | val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} | val uint64_to_uint128: a:U64.t -> b:t{v b == U64.v a} | let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 894,
"start_col": 0,
"start_line": 894
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)]
let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
let gte_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high)
(U64.lognot (U64.eq_mask a.high b.high)) in
let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high)
(U64.gte_mask a.low b.low) in
let mask = U64.logor mask_hi_gte mask_lo_gte in
gte_characterization a b;
lt_characterization a b;
{ low = mask; high = mask; } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt128.t{FStar.UInt128.v b == FStar.UInt64.v a} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt128.Mkuint128",
"FStar.UInt64.uint_to_t",
"FStar.UInt128.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt128.n",
"FStar.UInt64.n",
"FStar.UInt128.v",
"FStar.UInt64.v"
] | [] | false | false | false | false | false | let uint64_to_uint128 (a: U64.t) =
| { low = a; high = U64.uint_to_t 0 } | false |
FStar.UInt128.fst | FStar.UInt128.mul32_bound | val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 ->
n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} | val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 ->
n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} | let mul32_bound x y =
u32_product_bound x y;
x * y | {
"file_name": "ulib/FStar.UInt128.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 974,
"start_col": 0,
"start_line": 972
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt128
open FStar.Mul
module UInt = FStar.UInt
module Seq = FStar.Seq
module BV = FStar.BitVector
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
open FStar.BV
open FStar.Tactics.V2
module T = FStar.Tactics.V2
module TBV = FStar.Tactics.BV
#set-options "--max_fuel 0 --max_ifuel 0 --split_queries no"
#set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'"
(* TODO: explain why exactly this is needed? It leads to failures in
HACL* otherwise, claiming that some functions are not Low*. *)
#set-options "--normalize_pure_terms_for_extraction"
[@@ noextract_to "krml"]
noextract
let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) =
let ( ^^ ) = UInt.logxor in
let ( |^ ) = UInt.logor in
let ( -%^ ) = UInt.sub_mod in
let ( >>^ ) = UInt.shift_right in
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63
[@@ noextract_to "krml"]
noextract
let carry_bv (a b: uint_t 64) =
bvshr (bvxor (int2bv a)
(bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b))))
63
let carry_uint64_ok (a b:uint_t 64)
: squash (int2bv (carry_uint64 a b) == carry_bv a b)
= _ by (T.norm [delta_only [`%carry_uint64]; unascribe];
let open FStar.Tactics.BV in
mapply (`trans);
arith_to_bv_tac ();
arith_to_bv_tac ();
T.norm [delta_only [`%carry_bv]];
trefl())
let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1
let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0
let lem_ult_1 (a b: uint_t 64)
: squash (bvult (int2bv a) (int2bv b) ==> fact1 a b)
= assert (bvult (int2bv a) (int2bv b) ==> fact1 a b)
by (T.norm [delta_only [`%fact1;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'";
smt())
let lem_ult_2 (a b:uint_t 64)
: squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
= assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b)
by (T.norm [delta_only [`%fact0;`%carry_bv]];
set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'")
let int2bv_ult (#n: pos) (a b: uint_t n)
: Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b))
= introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b))
with _ . FStar.BV.int2bv_lemma_ult_1 a b;
introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b)
with _ . FStar.BV.int2bv_lemma_ult_2 a b
let lem_ult (a b:uint_t 64)
: Lemma (if a < b
then fact1 a b
else fact0 a b)
= int2bv_ult a b;
lem_ult_1 a b;
lem_ult_2 a b
let constant_time_carry (a b: U64.t) : Tot U64.t =
let open U64 in
// CONSTANT_TIME_CARRY macro
// ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1))
// 63 = sizeof(a) * 8 - 1
a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul
let carry_uint64_equiv (a b:UInt64.t)
: Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b))
= ()
// This type gets a special treatment in KaRaMeL and its definition is never
// printed in the resulting C file.
type uint128: Type0 = { low: U64.t; high: U64.t }
let t = uint128
let _ = intro_ambient n
let _ = intro_ambient t
[@@ noextract_to "krml"]
let v x = U64.v x.low + (U64.v x.high) * (pow2 64)
let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = ()
let uint_to_t x =
div_mod x (pow2 64);
{ low = U64.uint_to_t (x % (pow2 64));
high = U64.uint_to_t (x / (pow2 64)); }
let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2))
(ensures x1 == x2) =
assert (uint_to_t (v x1) == uint_to_t (v x2));
assert (uint_to_t (v x1) == x1);
assert (uint_to_t (v x2) == x2);
()
(* A weird helper used below... seems like the native encoding of
bitvectors may be making these proofs much harder than they should be? *)
let bv2int_fun (#n:pos) (a b : bv_t n)
: Lemma (requires a == b)
(ensures bv2int a == bv2int b)
= ()
(* This proof is quite brittle. It has a bunch of annotations to get
decent verification performance. *)
let constant_time_carry_ok (a b:U64.t)
: Lemma (constant_time_carry a b ==
(if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0))
= calc (==) {
U64.v (constant_time_carry a b);
(==) { carry_uint64_equiv a b }
carry_uint64 (U64.v a) (U64.v b);
(==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) }
bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b)));
(==) { carry_uint64_ok (U64.v a) (U64.v b);
bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b));
()
}
bv2int (carry_bv (U64.v a) (U64.v b));
(==) {
lem_ult (U64.v a) (U64.v b);
bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
}
bv2int
(if U64.v a < U64.v b
then int2bv 1
else int2bv 0);
};
assert (
bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0)
== U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []);
U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)
let carry (a b: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) =
constant_time_carry_ok a b;
constant_time_carry a b
let carry_sum_ok (a b:U64.t) :
Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = ()
let add (a b: t) : Pure t
(requires (v a + v b < pow2 128))
(ensures (fun r -> v a + v b = v r)) =
let l = U64.add_mod a.low b.low in
carry_sum_ok a.low b.low;
{ low = l;
high = U64.add (U64.add a.high b.high) (carry l b.low); }
let add_underspec (a b: t) =
let l = U64.add_mod a.low b.low in
begin
if v a + v b < pow2 128
then carry_sum_ok a.low b.low
else ()
end;
{ low = l;
high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); }
val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} ->
Lemma ((a % k) % (k'*k) == a % k)
let mod_mod a k k' =
assert (a % k < k);
assert (a % k < k' * k)
let mod_spec (a:nat) (k:nat{k > 0}) :
Lemma (a % k == a - a / k * k) = ()
val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} ->
Lemma (n / (m1*m2) == (n / m1) / m2)
let div_product n m1 m2 =
Math.division_multiplication_lemma n m1 m2
val mul_div_cancel : n:nat -> k:nat{k>0} ->
Lemma ((n * k) / k == n)
let mul_div_cancel n k =
Math.cancel_mul_div n k
val mod_mul: n:nat -> k1:pos -> k2:pos ->
Lemma ((n % k2) * k1 == (n * k1) % (k1*k2))
let mod_mul n k1 k2 =
Math.modulo_scale_lemma n k1 k2
let mod_spec_rew_n (n:nat) (k:nat{k > 0}) :
Lemma (n == n / k * k + n % k) = mod_spec n k
val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} ->
Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k)
let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k
val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma
(requires (n1 % k + n2 % k < k))
(ensures (n1 % k + n2 % k == (n1 + n2) % k))
let mod_add_small n1 n2 k =
mod_add n1 n2 k;
Math.small_modulo_lemma_1 (n1%k + n2%k) k
// This proof is pretty stable with the calc proof, but it can fail
// ~1% of the times, so add a retry.
#push-options "--split_queries no --z3rlimit 20 --retry 5"
let add_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a + v b) % pow2 128 = v r)) =
let l = U64.add_mod a.low b.low in
let r = { low = l;
high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
let b_l = U64.v b.low in
let b_h = U64.v b.high in
carry_sum_ok a.low b.low;
Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64);
calc (==) {
U64.v r.high * pow2 64;
== {}
((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64;
== { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) }
((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64);
== {}
((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
== {}
(a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64)
% pow2 128;
};
assert (U64.v r.low == (U64.v r.low) % pow2 128);
mod_add_small (a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64))
((a_l + b_l) % (pow2 64))
(pow2 128);
assert (U64.v r.low + U64.v r.high * pow2 64 ==
(a_h * pow2 64 +
b_h * pow2 64 +
(a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128);
mod_spec_rew_n (a_l + b_l) (pow2 64);
assert (v r ==
(a_h * pow2 64 +
b_h * pow2 64 +
a_l + b_l) % pow2 128);
assert_spinoff ((v a + v b) % pow2 128 = v r);
r
#pop-options
#push-options "--retry 5"
let sub (a b: t) : Pure t
(requires (v a - v b >= 0))
(ensures (fun r -> v r = v a - v b)) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub (U64.sub a.high b.high) (carry a.low l); }
#pop-options
let sub_underspec (a b: t) =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); }
let sub_mod_impl (a b: t) : t =
let l = U64.sub_mod a.low b.low in
{ low = l;
high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); }
#push-options "--retry 10" // flaky
let sub_mod_pos_ok (a b:t) : Lemma
(requires (v a - v b >= 0))
(ensures (v (sub_mod_impl a b) = v a - v b)) =
assert (sub a b == sub_mod_impl a b);
()
#pop-options
val u64_diff_wrap : a:U64.t -> b:U64.t ->
Lemma (requires (U64.v a < U64.v b))
(ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64))
let u64_diff_wrap a b = ()
#push-options "--z3rlimit 20"
val sub_mod_wrap1_ok : a:t -> b:t -> Lemma
(requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128))
#push-options "--retry 10"
let sub_mod_wrap1_ok a b =
// carry == 1 and subtraction in low wraps
let l = U64.sub_mod a.low b.low in
assert (U64.v (carry a.low l) == 1);
u64_diff_wrap a.low b.low;
// a.high <= b.high since v a < v b;
// case split on equality and strictly less
if U64.v a.high = U64.v b.high then ()
else begin
u64_diff_wrap a.high b.high;
()
end
#pop-options
let sum_lt (a1 a2 b1 b2:nat) : Lemma
(requires (a1 + a2 < b1 + b2 /\ a1 >= b1))
(ensures (a2 < b2)) = ()
let sub_mod_wrap2_ok (a b:t) : Lemma
(requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
// carry == 0, subtraction in low is exact, but subtraction in high
// must wrap since v a < v b
let l = U64.sub_mod a.low b.low in
let r = sub_mod_impl a b in
assert (U64.v l == U64.v a.low - U64.v b.low);
assert (U64.v (carry a.low l) == 0);
sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64);
assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64);
()
let sub_mod_wrap_ok (a b:t) : Lemma
(requires (v a - v b < 0))
(ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) =
if U64.v a.low < U64.v b.low
then sub_mod_wrap1_ok a b
else sub_mod_wrap2_ok a b
#push-options "--z3rlimit 40"
let sub_mod (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = (v a - v b) % pow2 128)) =
(if v a - v b >= 0
then sub_mod_pos_ok a b
else sub_mod_wrap_ok a b);
sub_mod_impl a b
#pop-options
val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat ->
Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n')
let shift_bound #n num n' =
Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1);
Math.distributivity_sub_left (pow2 n) 1 (pow2 n');
Math.pow2_plus n' n
val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2)
let append_uint #n1 #n2 num1 num2 =
shift_bound num2 n1;
num1 + num2 * pow2 n1
val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 ->
Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1))
let to_vec_append #n1 #n2 num1 num2 =
UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1)
let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a)
let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a)
let to_vec_v (a: t) :
Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) =
to_vec_append (U64.v a.low) (U64.v a.high)
val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) ==
BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2))
(BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logand (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) =
let r = { low = U64.logand a.low b.low;
high = U64.logand a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logand_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b));
r
val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) ==
BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2))
(BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logxor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) =
let r = { low = U64.logxor a.low b.low;
high = U64.logxor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logxor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b));
r
val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) :
Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) ==
BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor_vec_append #n1 #n2 a1 b1 a2 b2 =
Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2))
(BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2))
let logor (a b: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) =
let r = { low = U64.logor a.low b.low;
high = U64.logor a.high b.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
logor_vec_append (vec64 a.high) (vec64 b.high)
(vec64 a.low) (vec64 b.low);
to_vec_v a;
to_vec_v b;
assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b));
r
val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) :
Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) ==
BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot_vec_append #n1 #n2 a1 a2 =
Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2))
(BV.lognot_vec #(n1 + n2) (Seq.append a1 a2))
let lognot (a: t) : Pure t
(requires True)
(ensures (fun r -> v r = UInt.lognot #128 (v a))) =
let r = { low = U64.lognot a.low;
high = U64.lognot a.high } in
to_vec_v r;
assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low));
lognot_vec_append (vec64 a.high) (vec64 a.low);
to_vec_v a;
assert (vec128 r == BV.lognot_vec (vec128 a));
r
let mod_mul_cancel (n:nat) (k:nat{k > 0}) :
Lemma ((n * k) % k == 0) =
mod_spec (n * k) k;
mul_div_cancel n k;
()
let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) :
Lemma ((n * pow2 k2) % pow2 k1 == 0) =
assert (k2 == (k2 - k1) + k1);
Math.pow2_plus (k2 - k1) k1;
Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1);
mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1)
val mod_double: a:nat -> k:nat{k>0} ->
Lemma (a % k % k == a % k)
let mod_double a k =
mod_mod a k 1
let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) :
Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) =
Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s);
Math.paren_mul_right a2 (pow2 n1) (pow2 s);
Math.pow2_plus n1 s
#push-options "--z3rlimit 40"
let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) :
Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) ==
(a1 * pow2 s) % pow2 (n1+n2)) =
shift_left_large_val a1 a2 s;
mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2));
shift_past_mod a2 (n1+n2) (n1+s);
mod_double (a1 * pow2 s) (pow2 (n1+n2));
()
#pop-options
val shift_left_large_lemma_t : a:t -> s:nat ->
Lemma (requires (s >= 64))
(ensures ((v a * pow2 s) % pow2 128 ==
(U64.v a.low * pow2 s) % pow2 128))
let shift_left_large_lemma_t a s =
shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s
private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64
val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma
(requires True)
(ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1))
let div_pow2_diff a n1 n2 =
Math.pow2_plus n2 (n1-n2);
assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2)));
div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2));
mul_div_cancel a (pow2 n2)
val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat ->
Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2)
let mod_mul_pow2 n e1 e2 =
Math.lemma_mod_lt n (pow2 e1);
Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1);
assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2);
Math.pow2_plus e1 e2
let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) :
Lemma (n / pow2 s < pow2 (b - s)) =
Math.lemma_div_lt n b s
#push-options "--smtencoding.l_arith_repr native --z3rlimit 40"
let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) =
let high = U64.shift_left hi s in
let low = U64.shift_right lo (U32.sub u32_64 s) in
let s = U32.v s in
let high_n = U64.v hi % pow2 (64 - s) * pow2 s in
let low_n = U64.v lo / pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 s) (pow2 (64-s));
assert (U64.v high == high_n);
assert (U64.v low == low_n);
pow2_div_bound (U64.v lo) (64-s);
assert (low_n < pow2 s);
mod_mul_pow2 (U64.v hi) (64 - s) s;
U64.add high low
#pop-options
let div_plus_multiple (a:nat) (b:nat) (k:pos) :
Lemma (requires (a < k))
(ensures ((a + b * k) / k == b)) =
Math.division_addition_lemma a k b;
Math.small_division_lemma_1 a k
val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2)))
let div_add_small n m k1 k2 =
div_product (k1*m) k1 k2;
div_product (n+k1*m) k1 k2;
mul_div_cancel m k1;
assert (k1*m/k1 == m);
div_plus_multiple n m k1
val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos ->
Lemma (requires (n < k1))
(ensures (n + (k1 * m) % (k1 * k2) ==
(n + k1 * m) % (k1 * k2)))
let add_mod_small n m k1 k2 =
mod_spec (k1 * m) (k1 * k2);
mod_spec (n + k1 * m) (k1 * k2);
div_add_small n m k1 k2
let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) =
Math.pow2_plus 64 64;
mod_mul n (pow2 64) (pow2 64)
let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = ()
let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r ->
U64.v r * pow2 64 ==
(U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 +
U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) =
let r = add_u64_shift_left hi lo s in
let hi = U64.v hi in
let lo = U64.v lo in
let s = U32.v s in
// spec of add_u64_shift_left
assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s));
Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64);
mod_then_mul_64 (hi * pow2 s);
assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128);
div_pow2_diff lo 64 s;
assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64);
assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64);
mul_abc_to_acb hi (pow2 s) (pow2 64);
r
val add_mod_small' : n:nat -> m:nat -> k:pos ->
Lemma (requires (n + m % k < k))
(ensures (n + m % k == (n + m) % k))
let add_mod_small' n m k =
Math.lemma_mod_lt (n + m % k) k;
Math.modulo_lemma n k;
mod_add n m k
#push-options "--retry 5"
let shift_t_val (a: t) (s: nat) :
Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) =
Math.pow2_plus 64 s;
()
#pop-options
val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} ->
Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1)
#push-options "--retry 5"
let mul_mod_bound n s1 s2 =
// n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1
// n % pow2 (s2-s1) <= pow2 (s2-s1) - 1
// n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1
mod_mul n (pow2 s1) (pow2 (s2-s1));
// assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1);
Math.lemma_mod_lt n (pow2 (s2-s1));
Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1);
Math.pow2_plus (s2-s1) s1
#pop-options
let add_lt_le (a a' b b': int) :
Lemma (requires (a < a' /\ b <= b'))
(ensures (a + b < a' + b')) = ()
let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) :
Lemma (a * pow2 s < pow2 (64+s)) =
Math.pow2_plus 64 s;
Math.lemma_mult_le_right (pow2 s) a (pow2 64)
let shift_t_mod_val' (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
u64_pow2_bound a_l s;
mul_mod_bound a_h (64+s) 128;
// assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s));
add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s));
add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128);
shift_t_val a s;
()
let shift_t_mod_val (a: t) (s: nat{s < 64}) :
Lemma ((v a * pow2 s) % pow2 128 ==
U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) =
let a_l = U64.v a.low in
let a_h = U64.v a.high in
shift_t_mod_val' a s;
Math.pow2_plus 64 s;
Math.paren_mul_right a_h (pow2 64) (pow2 s);
()
#push-options "--z3rlimit 20"
let shift_left_small (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 64))
(ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) =
if U32.eq s 0ul then a
else
let r = { low = U64.shift_left a.low s;
high = add_u64_shift_left_respec a.high a.low s; } in
let s = U32.v s in
let a_l = U64.v a.low in
let a_h = U64.v a.high in
mod_spec_rew_n (a_l * pow2 s) (pow2 64);
shift_t_mod_val a s;
r
#pop-options
val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} ->
r:t{v r = (v a * pow2 (U32.v s)) % pow2 128}
#push-options "--z3rlimit 50 --retry 5" // sporadically fails
let shift_left_large a s =
let h_shift = U32.sub s u32_64 in
assert (U32.v h_shift < 64);
let r = { low = U64.uint_to_t 0;
high = U64.shift_left a.low h_shift; } in
assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64);
mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64);
Math.pow2_plus (U32.v s - 64) 64;
assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128);
shift_left_large_lemma_t a (U32.v s);
r
#pop-options
let shift_left a s =
if (U32.lt s u32_64) then shift_left_small a s
else shift_left_large a s
let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 (64 - U32.v s) % pow2 64)) =
let low = U64.shift_right lo s in
let high = U64.shift_left hi (U32.sub u32_64 s) in
let s = U32.v s in
let low_n = U64.v lo / pow2 s in
let high_n = U64.v hi % pow2 s * pow2 (64 - s) in
Math.pow2_plus (64-s) s;
mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s);
assert (U64.v high == high_n);
pow2_div_bound (U64.v lo) s;
assert (low_n < pow2 (64 - s));
mod_mul_pow2 (U64.v hi) s (64 - s);
U64.add low high
val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} ->
Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2)
let mul_pow2_diff a n1 n2 =
Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2);
mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2);
Math.pow2_plus (n1 - n2) n2
let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t
(requires (U32.v s <> 0))
(ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) +
U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) =
let r = add_u64_shift_right hi lo s in
let s = U32.v s in
mul_pow2_diff (U64.v hi) 64 s;
r
let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = ()
let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = ()
val div_product_comm : n1:nat -> k1:pos -> k2:pos ->
Lemma (n1 / k1 / k2 == n1 / k2 / k1)
let div_product_comm n1 k1 k2 =
div_product n1 k1 k2;
div_product n1 k2 k1
val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} ->
Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64)
let shift_right_reconstruct a_h s =
mul_pow2_diff a_h 64 s;
mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64);
div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64);
mul_div_cancel a_h (pow2 64);
assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64);
()
val u128_div_pow2 (a: t) (s:nat{s < 64}) :
Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s))
let u128_div_pow2 a s =
Math.pow2_plus (64-s) s;
Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s);
Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s))
let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.eq s 0ul then a
else
let r = { low = add_u64_shift_right_respec a.high a.low s;
high = U64.shift_right a.high s; } in
let a_h = U64.v a.high in
let a_l = U64.v a.low in
let s = U32.v s in
shift_right_reconstruct a_h s;
assert (v r == a_h * pow2 (64-s) + a_l / pow2 s);
u128_div_pow2 a s;
r
let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t
(requires True)
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
let r = { high = U64.uint_to_t 0;
low = U64.shift_right a.high (U32.sub s u32_64); } in
let s = U32.v s in
Math.pow2_plus 64 (s - 64);
div_product (v a) (pow2 64) (pow2 (s - 64));
assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64));
div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64);
r
let shift_right (a: t) (s: U32.t) : Pure t
(requires (U32.v s < 128))
(ensures (fun r -> v r == v a / pow2 (U32.v s))) =
if U32.lt s u32_64
then shift_right_small a s
else shift_right_large a s
let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high
let gt (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gt a.low b.low)
let lt (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lt a.low b.low)
let gte (a b:t) = U64.gt a.high b.high ||
(U64.eq a.high b.high && U64.gte a.low b.low)
let lte (a b:t) = U64.lt a.high b.high ||
(U64.eq a.high b.high && U64.lte a.low b.low)
let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) =
UInt.logand_commutative (U64.v a) (U64.v b)
val u64_and_0 (a b:U64.t) :
Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)]
let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a)
let u64_0_and (a b:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0)
[SMTPat (U64.logand a b)] =
u64_logand_comm a b
val u64_1s_and (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 /\
U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1)
[SMTPat (U64.logand a b)]
let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a)
let eq_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) =
let mask = U64.logand (U64.eq_mask a.low b.low)
(U64.eq_mask a.high b.high) in
{ low = mask; high = mask; }
private let gte_characterization (a b: t) :
Lemma (v a >= v b ==>
U64.v a.high > U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = ()
private let lt_characterization (a b: t) :
Lemma (v a < v b ==>
U64.v a.high < U64.v b.high \/
(U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = ()
let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) =
UInt.logor_commutative (U64.v a) (U64.v b)
val u64_or_1 (a b:U64.t) :
Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)]
let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a)
let u64_1_or (a b:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1)
[SMTPat (U64.logor a b)] =
u64_logor_comm a b
val u64_or_0 (a b:U64.t) :
Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0)
[SMTPat (U64.logor a b)]
let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a)
val u64_not_0 (a:U64.t) :
Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1)
[SMTPat (U64.lognot a)]
let u64_not_0 a = UInt.lognot_lemma_1 #64
val u64_not_1 (a:U64.t) :
Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0)
[SMTPat (U64.lognot a)]
let u64_not_1 a =
UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
let gte_mask (a b: t) : Pure t
(requires True)
(ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high)
(U64.lognot (U64.eq_mask a.high b.high)) in
let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high)
(U64.gte_mask a.low b.low) in
let mask = U64.logor mask_hi_gte mask_lo_gte in
gte_characterization a b;
lt_characterization a b;
{ low = mask; high = mask; }
let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; }
let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low
inline_for_extraction
let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
let u64_mod_32 (a: U64.t) : Pure U64.t
(requires True)
(ensures (fun r -> U64.v r = U64.v a % pow2 32)) =
UInt.logand_mask (U64.v a) 32;
U64.logand a u64_l32_mask
let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) =
div_mod (U64.v a) (pow2 32)
val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 ->
Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y)
let mul32_digits x y = ()
let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32
#push-options "--z3rlimit 30"
let u32_combine (hi lo: U64.t) : Pure U64.t
(requires (U64.v lo < pow2 32))
(ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) =
U64.add lo (U64.shift_left hi u32_32)
#pop-options
let product_bound (a b:nat) (k:pos) :
Lemma (requires (a < k /\ b < k))
(ensures a * b <= k * k - 2*k + 1) =
Math.lemma_mult_le_right b a (k-1);
Math.lemma_mult_le_left (k-1) b (k-1)
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n ->
Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
let uint_product_bound #n a b =
product_bound a b (pow2 n);
Math.pow2_plus n n
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} ->
Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
let u32_product_bound a b =
uint_product_bound #32 a b
let mul32 x y =
let x0 = u64_mod_32 x in
let x1 = U64.shift_right x u32_32 in
u32_product_bound (U64.v x0) (U32.v y);
let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in
let x0yl = u64_mod_32 x0y in
let x0yh = U64.shift_right x0y u32_32 in
u32_product_bound (U64.v x1) (U32.v y);
// not in the original C code
let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in
let x1y = U64.add x1y' x0yh in
// correspondence with C:
// r0 = r.low
// r0 is written using u32_combine hi lo = lo + hi << 32
// r1 = r.high
let r = { low = u32_combine x1y x0yl;
high = U64.shift_right x1y u32_32; } in
u64_32_digits x;
//assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0);
assert (U64.v x0y == U64.v x0 * U32.v y);
u64_32_digits x0y;
//assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl);
assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y);
mul32_digits (U64.v x) (U32.v y);
assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y);
r
let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32
let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32
val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.BV.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Calc.fsti.checked",
"FStar.BV.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt128.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.BV",
"short_module": "TBV"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.BitVector",
"short_module": "BV"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "UInt"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt.uint_t 32 -> y: FStar.UInt.uint_t 32
-> n: FStar.UInt.uint_t 64 {n < Prims.pow2 64 - Prims.pow2 32 - 1 /\ n == x * y} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt.uint_t",
"FStar.Mul.op_Star",
"Prims.unit",
"FStar.UInt128.u32_product_bound",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.eq2",
"Prims.int"
] | [] | false | false | false | false | false | let mul32_bound x y =
| u32_product_bound x y;
x * y | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.