file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.UInt128.fst
FStar.UInt128.u64_l32_mask
val u64_l32_mask:x: U64.t{U64.v x == pow2 32 - 1}
val u64_l32_mask:x: U64.t{U64.v x == pow2 32 - 1}
let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 899, "start_col": 0, "start_line": 899 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t{FStar.UInt64.v x == Prims.pow2 32 - 1}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.uint_to_t" ]
[]
false
false
false
false
false
let u64_l32_mask:x: U64.t{U64.v x == pow2 32 - 1} =
U64.uint_to_t 0xffffffff
false
FStar.UInt128.fst
FStar.UInt128.u64_mod_32
val u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32))
val u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32))
let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 905, "start_col": 0, "start_line": 901 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t
Prims.Pure
[]
[]
[ "FStar.UInt64.t", "FStar.UInt64.logand", "FStar.UInt128.u64_l32_mask", "Prims.unit", "FStar.UInt.logand_mask", "FStar.UInt64.n", "FStar.UInt64.v", "Prims.l_True", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.pow2" ]
[]
false
false
false
false
false
let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) =
UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask
false
FStar.UInt128.fst
FStar.UInt128.plh
val plh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
val plh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y))
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 979, "start_col": 0, "start_line": 978 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> n: FStar.UInt.uint_t 64 {n < Prims.pow2 64 - Prims.pow2 32 - 1}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "FStar.UInt128.mul32_bound", "FStar.UInt128.l32", "FStar.UInt64.v", "FStar.UInt128.h32", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.pow2" ]
[]
false
false
false
false
false
let plh (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} =
mul32_bound (l32 (U64.v x)) (h32 (U64.v y))
false
FStar.UInt128.fst
FStar.UInt128.mul_wide_low
val mul_wide_low : x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.int
let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 107, "end_line": 990, "start_col": 0, "start_line": 990 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "Prims.op_Addition", "Prims.op_Modulus", "FStar.Mul.op_Star", "FStar.UInt128.plh", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "Prims.pow2", "FStar.UInt128.pll_l", "Prims.int" ]
[]
false
false
false
true
false
let mul_wide_low (x y: U64.t) =
(plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y
false
FStar.UInt128.fst
FStar.UInt128.phl
val phl (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
val phl (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y))
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 981, "start_col": 0, "start_line": 980 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} =
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> n: FStar.UInt.uint_t 64 {n < Prims.pow2 64 - Prims.pow2 32 - 1}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "FStar.UInt128.mul32_bound", "FStar.UInt128.h32", "FStar.UInt64.v", "FStar.UInt128.l32", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.pow2" ]
[]
false
false
false
false
false
let phl (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} =
mul32_bound (h32 (U64.v x)) (l32 (U64.v y))
false
FStar.UInt128.fst
FStar.UInt128.pll
val pll (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
val pll (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1}
let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y))
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 977, "start_col": 0, "start_line": 976 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> n: FStar.UInt.uint_t 64 {n < Prims.pow2 64 - Prims.pow2 32 - 1}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "FStar.UInt128.mul32_bound", "FStar.UInt128.l32", "FStar.UInt64.v", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.pow2" ]
[]
false
false
false
false
false
let pll (x y: U64.t) : n: UInt.uint_t 64 {n < pow2 64 - pow2 32 - 1} =
mul32_bound (l32 (U64.v x)) (l32 (U64.v y))
false
FStar.UInt128.fst
FStar.UInt128.product_bound
val product_bound (a b: nat) (k: pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2 * k + 1)
val product_bound (a b: nat) (k: pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2 * k + 1)
let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1)
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 927, "start_col": 0, "start_line": 923 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (requires a < k /\ b < k) (ensures a * b <= k * k - 2 * k + 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.lemma_mult_le_left", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.squash", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let product_bound (a b: nat) (k: pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2 * k + 1) =
Math.lemma_mult_le_right b a (k - 1); Math.lemma_mult_le_left (k - 1) b (k - 1)
false
FStar.UInt128.fst
FStar.UInt128.u32_product_bound
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1)
let u32_product_bound a b = uint_product_bound #32 a b
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 938, "start_col": 0, "start_line": 937 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat{a < Prims.pow2 32} -> b: Prims.nat{b < Prims.pow2 32} -> FStar.Pervasives.Lemma (ensures FStar.UInt.size (a * b) 64 /\ a * b < Prims.pow2 64 - Prims.pow2 32 - 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.UInt128.uint_product_bound", "Prims.unit" ]
[]
true
false
true
false
false
let u32_product_bound a b =
uint_product_bound #32 a b
false
FStar.UInt128.fst
FStar.UInt128.u64_32_digits
val u64_32_digits (a: U64.t) : Lemma ((U64.v a / pow2 32) * pow2 32 + U64.v a % pow2 32 == U64.v a)
val u64_32_digits (a: U64.t) : Lemma ((U64.v a / pow2 32) * pow2 32 + U64.v a % pow2 32 == U64.v a)
let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32)
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 908, "start_col": 0, "start_line": 907 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures (FStar.UInt64.v a / Prims.pow2 32) * Prims.pow2 32 + FStar.UInt64.v a % Prims.pow2 32 == FStar.UInt64.v a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt64.t", "FStar.UInt128.div_mod", "FStar.UInt64.v", "Prims.pow2", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Division", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let u64_32_digits (a: U64.t) : Lemma ((U64.v a / pow2 32) * pow2 32 + U64.v a % pow2 32 == U64.v a) =
div_mod (U64.v a) (pow2 32)
false
FStar.UInt128.fst
FStar.UInt128.gte_mask
val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)})
val gte_mask: a:t -> b:t -> Tot (c:t{(v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)})
let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; }
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 892, "start_col": 0, "start_line": 882 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt128.t -> b: FStar.UInt128.t -> c: FStar.UInt128.t { (FStar.UInt128.v a >= FStar.UInt128.v b ==> FStar.UInt128.v c = Prims.pow2 FStar.UInt128.n - 1) /\ (FStar.UInt128.v a < FStar.UInt128.v b ==> FStar.UInt128.v c = 0) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt128.t", "FStar.UInt128.Mkuint128", "Prims.unit", "FStar.UInt128.lt_characterization", "FStar.UInt128.gte_characterization", "FStar.UInt64.t", "FStar.UInt64.logor", "FStar.UInt64.logand", "FStar.UInt64.eq_mask", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt64.gte_mask", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt64.lognot", "Prims.l_True", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt128.v", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_LessThan", "FStar.UInt128.n" ]
[]
false
false
false
false
false
let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) =
let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask }
false
FStar.UInt128.fst
FStar.UInt128.u32_combine
val u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = (U64.v hi % pow2 32) * pow2 32 + U64.v lo))
val u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = (U64.v hi % pow2 32) * pow2 32 + U64.v lo))
let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32)
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 920, "start_col": 0, "start_line": 917 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t
Prims.Pure
[]
[]
[ "FStar.UInt64.t", "FStar.UInt64.add", "FStar.UInt64.shift_left", "FStar.UInt128.u32_32", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt64.v", "Prims.pow2", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Modulus" ]
[]
false
false
false
false
false
let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = (U64.v hi % pow2 32) * pow2 32 + U64.v lo)) =
U64.add lo (U64.shift_left hi u32_32)
false
FStar.UInt128.fst
FStar.UInt128.mul_wide_high
val mul_wide_high : x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.int
let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 995, "start_col": 0, "start_line": 992 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "Prims.op_Addition", "FStar.UInt128.phh", "Prims.op_Division", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "Prims.pow2", "FStar.UInt128.plh", "Prims.op_Modulus", "Prims.int" ]
[]
false
false
false
true
false
let mul_wide_high (x y: U64.t) =
phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32
false
FStar.UInt128.fst
FStar.UInt128.u32_32
val u32_32:x: U32.t{U32.v x == 32}
val u32_32:x: U32.t{U32.v x == 32}
let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 914, "start_col": 0, "start_line": 914 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t{FStar.UInt32.v x == 32}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.uint_to_t" ]
[]
false
false
false
false
false
let u32_32:x: U32.t{U32.v x == 32} =
U32.uint_to_t 32
false
FStar.UInt128.fst
FStar.UInt128.uint_product_bound
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1)
let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 933, "start_col": 0, "start_line": 931 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures a * b <= Prims.pow2 (2 * n) - 2 * Prims.pow2 n + 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.UInt.uint_t", "FStar.Math.Lemmas.pow2_plus", "Prims.unit", "FStar.UInt128.product_bound", "Prims.pow2" ]
[]
true
false
true
false
false
let uint_product_bound #n a b =
product_bound a b (pow2 n); Math.pow2_plus n n
false
FStar.UInt128.fst
FStar.UInt128.u32_combine'
val u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo))
val u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo))
let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32)
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 1024, "start_col": 0, "start_line": 1021 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t')
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hi: FStar.UInt64.t -> lo: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t
Prims.Pure
[]
[]
[ "FStar.UInt64.t", "FStar.UInt64.add", "FStar.UInt64.shift_left", "FStar.UInt128.u32_32", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt64.v", "Prims.pow2", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.op_Modulus", "FStar.Mul.op_Star" ]
[]
false
false
false
false
false
let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) =
U64.add lo (U64.shift_left hi u32_32)
false
FStar.UInt128.fst
FStar.UInt128.u64_32_product
val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64)
val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64)
let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64)
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 1068, "start_col": 0, "start_line": 1060 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 25, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xl: FStar.UInt.uint_t 32 -> xh: FStar.UInt.uint_t 32 -> yl: FStar.UInt.uint_t 32 -> yh: FStar.UInt.uint_t 32 -> FStar.Pervasives.Lemma (ensures (xl + xh * Prims.pow2 32) * (yl + yh * Prims.pow2 32) == xl * yl + (xl * yh) * Prims.pow2 32 + (xh * yl) * Prims.pow2 32 + (xh * yh) * Prims.pow2 64)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt.uint_t", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.UInt128.mul_abc_to_acb", "FStar.UInt128.product_sums", "Prims.b2t", "Prims.op_GreaterThanOrEqual" ]
[]
true
false
true
false
false
let u64_32_product xl xh yl yh =
assert (xh >= 0); assert (pow2 32 >= 0); assert (xh * pow2 32 >= 0); product_sums xl (xh * pow2 32) yl (yh * pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64)
false
FStar.UInt128.fst
FStar.UInt128.product_expand
val product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y)
val product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y)
let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y))
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 80, "end_line": 1077, "start_col": 0, "start_line": 1071 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v x * FStar.UInt64.v y == FStar.UInt128.phh x y * Prims.pow2 64 + (FStar.UInt128.plh x y + FStar.UInt128.phl x y + FStar.UInt128.pll_h x y) * Prims.pow2 32 + FStar.UInt128.pll_l x y)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt64.t", "FStar.UInt128.u64_32_product", "FStar.UInt128.l32", "FStar.UInt64.v", "FStar.UInt128.h32", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.l_True", "Prims.squash", "FStar.UInt128.phh", "FStar.UInt128.plh", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "FStar.UInt128.pll_l", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) =
assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y))
false
FStar.UInt128.fst
FStar.UInt128.add_mod_then_mod
val add_mod_then_mod (n m: nat) (k: pos) : Lemma ((n + m % k) % k == (n + m) % k)
val add_mod_then_mod (n m: nat) (k: pos) : Lemma ((n + m % k) % k == (n + m) % k)
let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 16, "end_line": 1089, "start_col": 0, "start_line": 1085 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> m: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures (n + m % k) % k == (n + m) % k)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.pos", "FStar.UInt128.mod_double", "Prims.unit", "FStar.UInt128.mod_add", "Prims.op_Modulus", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let add_mod_then_mod (n m: nat) (k: pos) : Lemma ((n + m % k) % k == (n + m) % k) =
mod_add n m k; mod_add n (m % k) k; mod_double m k
false
FStar.UInt128.fst
FStar.UInt128.mul_wide_impl_t'
val mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let u1, w3, x', t' = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y))
val mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let u1, w3, x', t' = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y))
let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t')
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 1018, "start_col": 0, "start_line": 998 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure (((FStar.UInt64.t * FStar.UInt64.t) * FStar.UInt64.t) * FStar.UInt64.t)
Prims.Pure
[]
[]
[ "FStar.UInt64.t", "FStar.Pervasives.Native.Mktuple4", "FStar.UInt64.add", "FStar.UInt64.mul", "Prims.unit", "FStar.UInt128.u32_product_bound", "FStar.UInt64.v", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt64.n", "FStar.UInt128.h32", "FStar.UInt64.shift_right", "FStar.UInt128.u32_32", "FStar.UInt128.pll_h", "FStar.UInt128.pll_l", "FStar.UInt128.u64_mod_32", "FStar.UInt.uint_t", "FStar.UInt128.pll", "FStar.Pervasives.Native.tuple4", "Prims.l_True", "Prims.l_and", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Addition", "FStar.UInt128.phl" ]
[]
false
false
false
false
false
let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let u1, w3, x', t' = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) =
let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t')
false
FStar.UInt128.fst
FStar.UInt128.mul_wide_impl
val mul_wide_impl (x y: U64.t) : Tot (r: t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64})
val mul_wide_impl (x y: U64.t) : Tot (r: t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64})
let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 1051, "start_col": 0, "start_line": 1027 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> r: FStar.UInt128.t { FStar.UInt64.v (Mkuint128?.low r) == FStar.UInt128.mul_wide_low x y /\ FStar.UInt64.v (Mkuint128?.high r) == FStar.UInt128.mul_wide_high x y % Prims.pow2 64 }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "FStar.UInt128.uint128", "FStar.UInt128.Mkuint128", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.UInt64.v", "Prims.op_Modulus", "Prims.op_Addition", "FStar.UInt128.phh", "Prims.op_Division", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "Prims.pow2", "FStar.UInt128.plh", "FStar.UInt64.add_mod", "FStar.UInt64.add", "FStar.UInt64.mul", "FStar.Mul.op_Star", "FStar.UInt128.pll_l", "FStar.UInt128.u32_combine'", "FStar.UInt128.mod_mul_pow2", "FStar.UInt128.u32_product_bound", "FStar.UInt64.shift_right", "FStar.UInt128.u32_32", "Prims.l_or", "FStar.UInt.size", "FStar.UInt64.n", "FStar.UInt128.h32", "FStar.UInt128.u64_mod_32", "FStar.UInt128.t", "Prims.l_and", "FStar.UInt128.__proj__Mkuint128__item__low", "FStar.UInt128.mul_wide_low", "FStar.UInt128.__proj__Mkuint128__item__high", "FStar.UInt128.mul_wide_high", "FStar.Pervasives.Native.tuple4", "FStar.UInt128.mul_wide_impl_t'" ]
[]
false
false
false
false
false
let mul_wide_impl (x y: U64.t) : Tot (r: t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) =
let u1, w3, x', t' = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1 } in r
false
FStar.UInt128.fst
FStar.UInt128.mod_spec_multiply
val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k)
val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k)
let mod_spec_multiply n k = Math.lemma_mod_spec2 n k
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 1135, "start_col": 0, "start_line": 1134 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures ((n - n % k) / k) * k == n - n % k)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.lemma_mod_spec2", "Prims.unit" ]
[]
true
false
true
false
false
let mod_spec_multiply n k =
Math.lemma_mod_spec2 n k
false
FStar.UInt128.fst
FStar.UInt128.shift_add
val shift_add (n: nat) (m: nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64)
val shift_add (n: nat) (m: nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64)
let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64)
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 1093, "start_col": 0, "start_line": 1091 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> m: Prims.nat{m < Prims.pow2 32} -> FStar.Pervasives.Lemma (ensures n * Prims.pow2 32 % Prims.pow2 64 + m == (n * Prims.pow2 32 + m) % Prims.pow2 64)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.UInt128.add_mod_small'", "FStar.Mul.op_Star", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let shift_add (n: nat) (m: nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) =
add_mod_small' m (n * pow2 32) (pow2 64)
false
FStar.UInt128.fst
FStar.UInt128.mul_wide_low_ok
val mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64)
val mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64)
let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 1106, "start_col": 0, "start_line": 1095 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt128.mul_wide_low x y == FStar.UInt64.v x * FStar.UInt64.v y % Prims.pow2 64)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt64.t", "FStar.UInt128.product_low_expand", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.UInt128.mul_wide_low", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.UInt128.plh", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "Prims.pow2", "FStar.UInt128.pll_l", "FStar.UInt128.shift_add", "FStar.UInt128.mod_mul", "FStar.UInt128.add_mod_then_mod", "FStar.Math.Lemmas.pow2_plus", "Prims.l_True", "Prims.squash", "FStar.UInt64.v", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) =
Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == ((plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32) * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) % pow2 32) * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y
false
FStar.UInt128.fst
FStar.UInt128.product_low_expand
val product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64)
val product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64)
let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64)
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 97, "end_line": 1083, "start_col": 0, "start_line": 1079 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v x * FStar.UInt64.v y % Prims.pow2 64 == ((FStar.UInt128.plh x y + FStar.UInt128.phl x y + FStar.UInt128.pll_h x y) * Prims.pow2 32 + FStar.UInt128.pll_l x y) % Prims.pow2 64)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt64.t", "FStar.Math.Lemmas.lemma_mod_plus", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.UInt128.plh", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "Prims.pow2", "FStar.UInt128.pll_l", "FStar.UInt128.phh", "Prims.unit", "FStar.UInt128.product_expand", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.UInt64.v", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) =
product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64)
false
FStar.UInt128.fst
FStar.UInt128.product_high32
val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y)
val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y)
let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32)
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 1117, "start_col": 0, "start_line": 1111 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v x * FStar.UInt64.v y / Prims.pow2 32 == FStar.UInt128.phh x y * Prims.pow2 32 + FStar.UInt128.plh x y + FStar.UInt128.phl x y + FStar.UInt128.pll_h x y)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt64.t", "FStar.Math.Lemmas.small_division_lemma_1", "FStar.UInt128.pll_l", "Prims.pow2", "Prims.unit", "FStar.UInt128.mul_div_cancel", "Prims.op_Addition", "FStar.UInt128.plh", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "FStar.Mul.op_Star", "FStar.UInt128.phh", "FStar.Math.Lemmas.division_addition_lemma", "FStar.UInt128.product_expand", "FStar.Math.Lemmas.pow2_plus" ]
[]
true
false
true
false
false
let product_high32 x y =
Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32)
false
FStar.UInt128.fst
FStar.UInt128.mod_spec_mod
val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0)
val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0)
let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 1140, "start_col": 0, "start_line": 1138 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures (n - n % k) % k == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.multiple_modulo_lemma", "Prims.op_Division", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Subtraction", "Prims.op_Modulus", "FStar.Mul.op_Star" ]
[]
true
false
true
false
false
let mod_spec_mod n k =
assert (n - n % k == (n / k) * k); Math.multiple_modulo_lemma (n / k) k
false
FStar.UInt128.fst
FStar.UInt128.sum_shift_carry
val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k)
val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k)
let sum_shift_carry a b k = div_sum_combine a (b+a%k) k; // assert (a / k + (b + a%k) / k == (a + b + (a % k - a % k) - (b + a%k) % k) / k); // assert ((a + b + (a % k - a % k) - (b + a%k) % k) / k == (a + b - (b + a%k) % k) / k); add_mod_then_mod b a k; Math.lemma_mod_spec (a+b) k
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 1194, "start_col": 0, "start_line": 1189 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k #pop-options val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) #push-options "--retry 5" // sporadically fails let div_sum_combine n m k = sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n%k) + (m - m%k)) / k) k; assert (n + m - n % k - m % k == (n - n%k) + (m - m%k)) #pop-options val sum_shift_carry : a:nat -> b:nat -> k:pos ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures a / k + (b + a % k) / k == (a + b) / k)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.lemma_mod_spec", "Prims.op_Addition", "Prims.unit", "FStar.UInt128.add_mod_then_mod", "FStar.UInt128.div_sum_combine", "Prims.op_Modulus" ]
[]
true
false
true
false
false
let sum_shift_carry a b k =
div_sum_combine a (b + a % k) k; add_mod_then_mod b a k; Math.lemma_mod_spec (a + b) k
false
FStar.UInt128.fst
FStar.UInt128.product_high_expand
val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32)
val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32)
let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); ()
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 4, "end_line": 1129, "start_col": 0, "start_line": 1124 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 5, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 15, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v x * FStar.UInt64.v y / Prims.pow2 64 == FStar.UInt128.phh x y + (FStar.UInt128.plh x y + FStar.UInt128.phl x y + FStar.UInt128.pll_h x y) / Prims.pow2 32)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt64.t", "Prims.unit", "FStar.Math.Lemmas.division_addition_lemma", "Prims.op_Addition", "FStar.UInt128.plh", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "Prims.pow2", "FStar.UInt128.phh", "FStar.UInt128.product_high32", "FStar.UInt128.div_product", "FStar.UInt128.mul_wide_high", "FStar.Math.Lemmas.pow2_plus" ]
[]
true
false
true
false
false
let product_high_expand x y =
Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); ()
false
FStar.UInt128.fst
FStar.UInt128.div_sum_combine1
val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k))
val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k))
let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; ()
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 4, "end_line": 1152, "start_col": 0, "start_line": 1148 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> m: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures (n / k + m / k) * k == n - n % k + (m - m % k))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.pos", "Prims.unit", "FStar.UInt128.div_mod", "FStar.Math.Lemmas.distributivity_add_left", "Prims.op_Division" ]
[]
true
false
true
false
false
let div_sum_combine1 n m k =
Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; ()
false
FStar.UInt128.fst
FStar.UInt128.sum_rounded_mod_exact
val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k))
val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k))
let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 46, "end_line": 1174, "start_col": 0, "start_line": 1168 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 5, "quake_keep": false, "quake_lo": 1, "retry": true, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> m: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures ((n - n % k + (m - m % k)) / k) * k == n - n % k + (m - m % k))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.div_exact_r", "Prims.op_Addition", "Prims.op_Subtraction", "Prims.op_Modulus", "Prims.unit", "FStar.UInt128.mod_add", "FStar.UInt128.sub_mod_gt_0", "FStar.UInt128.n_minus_mod_exact" ]
[]
true
false
true
false
false
let sum_rounded_mod_exact n m k =
n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n % k) (m - m % k) k; Math.div_exact_r ((n - n % k) + (m - m % k)) k
false
FStar.UInt128.fst
FStar.UInt128.mul_wide_high_ok
val mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y)
val mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y)
let mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y) = product_high_expand x y; sum_shift_carry (phl x y + pll_h x y) (plh x y) (pow2 32)
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 1199, "start_col": 0, "start_line": 1196 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k #pop-options val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) #push-options "--retry 5" // sporadically fails let div_sum_combine n m k = sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n%k) + (m - m%k)) / k) k; assert (n + m - n % k - m % k == (n - n%k) + (m - m%k)) #pop-options val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k) let sum_shift_carry a b k = div_sum_combine a (b+a%k) k; // assert (a / k + (b + a%k) / k == (a + b + (a % k - a % k) - (b + a%k) % k) / k); // assert ((a + b + (a % k - a % k) - (b + a%k) % k) / k == (a + b - (b + a%k) % k) / k); add_mod_then_mod b a k; Math.lemma_mod_spec (a+b) k
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.UInt64.v x * FStar.UInt64.v y / Prims.pow2 64 == FStar.UInt128.mul_wide_high x y)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt64.t", "FStar.UInt128.sum_shift_carry", "Prims.op_Addition", "FStar.UInt128.phl", "FStar.UInt128.pll_h", "FStar.UInt128.plh", "Prims.pow2", "Prims.unit", "FStar.UInt128.product_high_expand", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Division", "FStar.Mul.op_Star", "FStar.UInt64.v", "FStar.UInt128.mul_wide_high", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y) =
product_high_expand x y; sum_shift_carry (phl x y + pll_h x y) (plh x y) (pow2 32)
false
FStar.UInt128.fst
FStar.UInt128.n_minus_mod_exact
val n_minus_mod_exact (n: nat) (k: pos) : Lemma ((n - n % k) % k == 0)
val n_minus_mod_exact (n: nat) (k: pos) : Lemma ((n - n % k) % k == 0)
let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 1160, "start_col": 0, "start_line": 1157 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> k: Prims.pos -> FStar.Pervasives.Lemma (ensures (n - n % k) % k == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.pos", "FStar.UInt128.mod_0", "Prims.unit", "FStar.UInt128.mod_spec_mod", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.op_Subtraction", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let n_minus_mod_exact (n: nat) (k: pos) : Lemma ((n - n % k) % k == 0) =
mod_spec_mod n k; mod_0 k
false
FStar.UInt128.fst
FStar.UInt128.product_div_bound
val product_div_bound (#n: pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n)
val product_div_bound (#n: pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n)
let product_div_bound (#n:pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n) = Math.pow2_plus n n; product_bound x y (pow2 n); pow2_div_bound #(n+n) (x * y) n
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 1205, "start_col": 0, "start_line": 1201 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k #pop-options val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) #push-options "--retry 5" // sporadically fails let div_sum_combine n m k = sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n%k) + (m - m%k)) / k) k; assert (n + m - n % k - m % k == (n - n%k) + (m - m%k)) #pop-options val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k) let sum_shift_carry a b k = div_sum_combine a (b+a%k) k; // assert (a / k + (b + a%k) / k == (a + b + (a % k - a % k) - (b + a%k) % k) / k); // assert ((a + b + (a % k - a % k) - (b + a%k) % k) / k == (a + b - (b + a%k) % k) / k); add_mod_then_mod b a k; Math.lemma_mod_spec (a+b) k let mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y) = product_high_expand x y; sum_shift_carry (phl x y + pll_h x y) (plh x y) (pow2 32)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t n -> y: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures x * y / Prims.pow2 n < Prims.pow2 n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt128.pow2_div_bound", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.unit", "FStar.UInt128.product_bound", "Prims.pow2", "FStar.Math.Lemmas.pow2_plus", "Prims.l_True", "Prims.squash", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let product_div_bound (#n: pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n) =
Math.pow2_plus n n; product_bound x y (pow2 n); pow2_div_bound #(n + n) (x * y) n
false
FStar.UInt128.fst
FStar.UInt128.mul_wide
val mul_wide: x:U64.t -> y:U64.t -> Pure t (requires True) (ensures (fun r -> v r == U64.v x * U64.v y))
val mul_wide: x:U64.t -> y:U64.t -> Pure t (requires True) (ensures (fun r -> v r == U64.v x * U64.v y))
let mul_wide (x y:U64.t) : Pure t (requires True) (ensures (fun r -> v r == U64.v x * U64.v y)) = mul_wide_low_ok x y; mul_wide_high_ok x y; product_div_bound (U64.v x) (U64.v y); Math.modulo_lemma (mul_wide_high x y) (pow2 64); mul_wide_impl x y
{ "file_name": "ulib/FStar.UInt128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 1214, "start_col": 0, "start_line": 1207 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt128 open FStar.Mul module UInt = FStar.UInt module Seq = FStar.Seq module BV = FStar.BitVector module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas open FStar.BV open FStar.Tactics.V2 module T = FStar.Tactics.V2 module TBV = FStar.Tactics.BV #set-options "--max_fuel 0 --max_ifuel 0 --split_queries no" #set-options "--using_facts_from '*,-FStar.Tactics,-FStar.Reflection'" (* TODO: explain why exactly this is needed? It leads to failures in HACL* otherwise, claiming that some functions are not Low*. *) #set-options "--normalize_pure_terms_for_extraction" [@@ noextract_to "krml"] noextract let carry_uint64 (a b: uint_t 64) : Tot (uint_t 64) = let ( ^^ ) = UInt.logxor in let ( |^ ) = UInt.logor in let ( -%^ ) = UInt.sub_mod in let ( >>^ ) = UInt.shift_right in a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63 [@@ noextract_to "krml"] noextract let carry_bv (a b: uint_t 64) = bvshr (bvxor (int2bv a) (bvor (bvxor (int2bv a) (int2bv b)) (bvxor (bvsub (int2bv a) (int2bv b)) (int2bv b)))) 63 let carry_uint64_ok (a b:uint_t 64) : squash (int2bv (carry_uint64 a b) == carry_bv a b) = _ by (T.norm [delta_only [`%carry_uint64]; unascribe]; let open FStar.Tactics.BV in mapply (`trans); arith_to_bv_tac (); arith_to_bv_tac (); T.norm [delta_only [`%carry_bv]]; trefl()) let fact1 (a b: uint_t 64) = carry_bv a b == int2bv 1 let fact0 (a b: uint_t 64) = carry_bv a b == int2bv 0 let lem_ult_1 (a b: uint_t 64) : squash (bvult (int2bv a) (int2bv b) ==> fact1 a b) = assert (bvult (int2bv a) (int2bv b) ==> fact1 a b) by (T.norm [delta_only [`%fact1;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'"; smt()) let lem_ult_2 (a b:uint_t 64) : squash (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) = assert (not (bvult (int2bv a) (int2bv b)) ==> fact0 a b) by (T.norm [delta_only [`%fact0;`%carry_bv]]; set_options "--smtencoding.elim_box true --using_facts_from '__Nothing__' --z3smtopt '(set-option :smt.case_split 1)'") let int2bv_ult (#n: pos) (a b: uint_t n) : Lemma (ensures a < b <==> bvult #n (int2bv #n a) (int2bv #n b)) = introduce (a < b) ==> (bvult #n (int2bv #n a) (int2bv #n b)) with _ . FStar.BV.int2bv_lemma_ult_1 a b; introduce (bvult #n (int2bv #n a) (int2bv #n b)) ==> (a < b) with _ . FStar.BV.int2bv_lemma_ult_2 a b let lem_ult (a b:uint_t 64) : Lemma (if a < b then fact1 a b else fact0 a b) = int2bv_ult a b; lem_ult_1 a b; lem_ult_2 a b let constant_time_carry (a b: U64.t) : Tot U64.t = let open U64 in // CONSTANT_TIME_CARRY macro // ((a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1)) // 63 = sizeof(a) * 8 - 1 a ^^ ((a ^^ b) |^ ((a -%^ b) ^^ b)) >>^ 63ul let carry_uint64_equiv (a b:UInt64.t) : Lemma (U64.v (constant_time_carry a b) == carry_uint64 (U64.v a) (U64.v b)) = () // This type gets a special treatment in KaRaMeL and its definition is never // printed in the resulting C file. type uint128: Type0 = { low: U64.t; high: U64.t } let t = uint128 let _ = intro_ambient n let _ = intro_ambient t [@@ noextract_to "krml"] let v x = U64.v x.low + (U64.v x.high) * (pow2 64) let div_mod (x:nat) (k:nat{k > 0}) : Lemma (x / k * k + x % k == x) = () let uint_to_t x = div_mod x (pow2 64); { low = U64.uint_to_t (x % (pow2 64)); high = U64.uint_to_t (x / (pow2 64)); } let v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures x1 == x2) = assert (uint_to_t (v x1) == uint_to_t (v x2)); assert (uint_to_t (v x1) == x1); assert (uint_to_t (v x2) == x2); () (* A weird helper used below... seems like the native encoding of bitvectors may be making these proofs much harder than they should be? *) let bv2int_fun (#n:pos) (a b : bv_t n) : Lemma (requires a == b) (ensures bv2int a == bv2int b) = () (* This proof is quite brittle. It has a bunch of annotations to get decent verification performance. *) let constant_time_carry_ok (a b:U64.t) : Lemma (constant_time_carry a b == (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) = calc (==) { U64.v (constant_time_carry a b); (==) { carry_uint64_equiv a b } carry_uint64 (U64.v a) (U64.v b); (==) { inverse_num_lemma (carry_uint64 (U64.v a) (U64.v b)) } bv2int (int2bv (carry_uint64 (U64.v a) (U64.v b))); (==) { carry_uint64_ok (U64.v a) (U64.v b); bv2int_fun (int2bv (carry_uint64 (U64.v a) (U64.v b))) (carry_bv (U64.v a) (U64.v b)); () } bv2int (carry_bv (U64.v a) (U64.v b)); (==) { lem_ult (U64.v a) (U64.v b); bv2int_fun (carry_bv (U64.v a) (U64.v b)) (if U64.v a < U64.v b then int2bv 1 else int2bv 0) } bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0); }; assert ( bv2int (if U64.v a < U64.v b then int2bv 1 else int2bv 0) == U64.v (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0)) by (T.norm []); U64.v_inj (constant_time_carry a b) (if U64.lt a b then U64.uint_to_t 1 else U64.uint_to_t 0) let carry (a b: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r == (if U64.v a < U64.v b then 1 else 0))) = constant_time_carry_ok a b; constant_time_carry a b let carry_sum_ok (a b:U64.t) : Lemma (U64.v (carry (U64.add_mod a b) b) == (U64.v a + U64.v b) / (pow2 64)) = () let add (a b: t) : Pure t (requires (v a + v b < pow2 128)) (ensures (fun r -> v a + v b = v r)) = let l = U64.add_mod a.low b.low in carry_sum_ok a.low b.low; { low = l; high = U64.add (U64.add a.high b.high) (carry l b.low); } let add_underspec (a b: t) = let l = U64.add_mod a.low b.low in begin if v a + v b < pow2 128 then carry_sum_ok a.low b.low else () end; { low = l; high = U64.add_underspec (U64.add_underspec a.high b.high) (carry l b.low); } val mod_mod: a:nat -> k:nat{k>0} -> k':nat{k'>0} -> Lemma ((a % k) % (k'*k) == a % k) let mod_mod a k k' = assert (a % k < k); assert (a % k < k' * k) let mod_spec (a:nat) (k:nat{k > 0}) : Lemma (a % k == a - a / k * k) = () val div_product : n:nat -> m1:nat{m1>0} -> m2:nat{m2>0} -> Lemma (n / (m1*m2) == (n / m1) / m2) let div_product n m1 m2 = Math.division_multiplication_lemma n m1 m2 val mul_div_cancel : n:nat -> k:nat{k>0} -> Lemma ((n * k) / k == n) let mul_div_cancel n k = Math.cancel_mul_div n k val mod_mul: n:nat -> k1:pos -> k2:pos -> Lemma ((n % k2) * k1 == (n * k1) % (k1*k2)) let mod_mul n k1 k2 = Math.modulo_scale_lemma n k1 k2 let mod_spec_rew_n (n:nat) (k:nat{k > 0}) : Lemma (n == n / k * k + n % k) = mod_spec n k val mod_add: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma ((n1 % k + n2 % k) % k == (n1 + n2) % k) let mod_add n1 n2 k = Math.modulo_distributivity n1 n2 k val mod_add_small: n1:nat -> n2:nat -> k:nat{k > 0} -> Lemma (requires (n1 % k + n2 % k < k)) (ensures (n1 % k + n2 % k == (n1 + n2) % k)) let mod_add_small n1 n2 k = mod_add n1 n2 k; Math.small_modulo_lemma_1 (n1%k + n2%k) k // This proof is pretty stable with the calc proof, but it can fail // ~1% of the times, so add a retry. #push-options "--split_queries no --z3rlimit 20 --retry 5" let add_mod (a b: t) : Pure t (requires True) (ensures (fun r -> (v a + v b) % pow2 128 = v r)) = let l = U64.add_mod a.low b.low in let r = { low = l; high = U64.add_mod (U64.add_mod a.high b.high) (carry l b.low)} in let a_l = U64.v a.low in let a_h = U64.v a.high in let b_l = U64.v b.low in let b_h = U64.v b.high in carry_sum_ok a.low b.low; Math.lemma_mod_plus_distr_l (a_h + b_h) ((a_l + b_l) / (pow2 64)) (pow2 64); calc (==) { U64.v r.high * pow2 64; == {} ((a_h + b_h + (a_l + b_l) / (pow2 64)) % pow2 64) * pow2 64; == { mod_mul (a_h + b_h + (a_l + b_l) / (pow2 64)) (pow2 64) (pow2 64) } ((a_h + b_h + (a_l + b_l) / (pow2 64)) * pow2 64) % (pow2 64 * pow2 64); == {} ((a_h + b_h + (a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; == {} (a_h * pow2 64 + b_h * pow2 64 + ((a_l + b_l)/(pow2 64)) * pow2 64) % pow2 128; }; assert (U64.v r.low == (U64.v r.low) % pow2 128); mod_add_small (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64)) ((a_l + b_l) % (pow2 64)) (pow2 128); assert (U64.v r.low + U64.v r.high * pow2 64 == (a_h * pow2 64 + b_h * pow2 64 + (a_l + b_l) / (pow2 64) * (pow2 64) + (a_l + b_l) % (pow2 64)) % pow2 128); mod_spec_rew_n (a_l + b_l) (pow2 64); assert (v r == (a_h * pow2 64 + b_h * pow2 64 + a_l + b_l) % pow2 128); assert_spinoff ((v a + v b) % pow2 128 = v r); r #pop-options #push-options "--retry 5" let sub (a b: t) : Pure t (requires (v a - v b >= 0)) (ensures (fun r -> v r = v a - v b)) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub (U64.sub a.high b.high) (carry a.low l); } #pop-options let sub_underspec (a b: t) = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_underspec (U64.sub_underspec a.high b.high) (carry a.low l); } let sub_mod_impl (a b: t) : t = let l = U64.sub_mod a.low b.low in { low = l; high = U64.sub_mod (U64.sub_mod a.high b.high) (carry a.low l); } #push-options "--retry 10" // flaky let sub_mod_pos_ok (a b:t) : Lemma (requires (v a - v b >= 0)) (ensures (v (sub_mod_impl a b) = v a - v b)) = assert (sub a b == sub_mod_impl a b); () #pop-options val u64_diff_wrap : a:U64.t -> b:U64.t -> Lemma (requires (U64.v a < U64.v b)) (ensures (U64.v (U64.sub_mod a b) == U64.v a - U64.v b + pow2 64)) let u64_diff_wrap a b = () #push-options "--z3rlimit 20" val sub_mod_wrap1_ok : a:t -> b:t -> Lemma (requires (v a - v b < 0 /\ U64.v a.low < U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) #push-options "--retry 10" let sub_mod_wrap1_ok a b = // carry == 1 and subtraction in low wraps let l = U64.sub_mod a.low b.low in assert (U64.v (carry a.low l) == 1); u64_diff_wrap a.low b.low; // a.high <= b.high since v a < v b; // case split on equality and strictly less if U64.v a.high = U64.v b.high then () else begin u64_diff_wrap a.high b.high; () end #pop-options let sum_lt (a1 a2 b1 b2:nat) : Lemma (requires (a1 + a2 < b1 + b2 /\ a1 >= b1)) (ensures (a2 < b2)) = () let sub_mod_wrap2_ok (a b:t) : Lemma (requires (v a - v b < 0 /\ U64.v a.low >= U64.v b.low)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = // carry == 0, subtraction in low is exact, but subtraction in high // must wrap since v a < v b let l = U64.sub_mod a.low b.low in let r = sub_mod_impl a b in assert (U64.v l == U64.v a.low - U64.v b.low); assert (U64.v (carry a.low l) == 0); sum_lt (U64.v a.low) (U64.v a.high * pow2 64) (U64.v b.low) (U64.v b.high * pow2 64); assert (U64.v (U64.sub_mod a.high b.high) == U64.v a.high - U64.v b.high + pow2 64); () let sub_mod_wrap_ok (a b:t) : Lemma (requires (v a - v b < 0)) (ensures (v (sub_mod_impl a b) = v a - v b + pow2 128)) = if U64.v a.low < U64.v b.low then sub_mod_wrap1_ok a b else sub_mod_wrap2_ok a b #push-options "--z3rlimit 40" let sub_mod (a b: t) : Pure t (requires True) (ensures (fun r -> v r = (v a - v b) % pow2 128)) = (if v a - v b >= 0 then sub_mod_pos_ok a b else sub_mod_wrap_ok a b); sub_mod_impl a b #pop-options val shift_bound : #n:nat -> num:UInt.uint_t n -> n':nat -> Lemma (num * pow2 n' <= pow2 (n'+n) - pow2 n') let shift_bound #n num n' = Math.lemma_mult_le_right (pow2 n') num (pow2 n - 1); Math.distributivity_sub_left (pow2 n) 1 (pow2 n'); Math.pow2_plus n' n val append_uint : #n1:nat -> #n2:nat -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> UInt.uint_t (n1+n2) let append_uint #n1 #n2 num1 num2 = shift_bound num2 n1; num1 + num2 * pow2 n1 val to_vec_append : #n1:nat{n1 > 0} -> #n2:nat{n2 > 0} -> num1:UInt.uint_t n1 -> num2:UInt.uint_t n2 -> Lemma (UInt.to_vec (append_uint num1 num2) == Seq.append (UInt.to_vec num2) (UInt.to_vec num1)) let to_vec_append #n1 #n2 num1 num2 = UInt.append_lemma (UInt.to_vec num2) (UInt.to_vec num1) let vec128 (a: t) : BV.bv_t 128 = UInt.to_vec #128 (v a) let vec64 (a: U64.t) : BV.bv_t 64 = UInt.to_vec (U64.v a) let to_vec_v (a: t) : Lemma (vec128 a == Seq.append (vec64 a.high) (vec64 a.low)) = to_vec_append (U64.v a.low) (U64.v a.high) val logand_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2) == BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logand_vec a1 b1) (BV.logand_vec a2 b2)) (BV.logand_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logand (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logand #128 (v a) (v b))) = let r = { low = U64.logand a.low b.low; high = U64.logand a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logand_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logand_vec (vec128 a) (vec128 b)); r val logxor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2) == BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logxor_vec a1 b1) (BV.logxor_vec a2 b2)) (BV.logxor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logxor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logxor #128 (v a) (v b))) = let r = { low = U64.logxor a.low b.low; high = U64.logxor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logxor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logxor_vec (vec128 a) (vec128 b)); r val logor_vec_append (#n1 #n2: pos) (a1 b1: BV.bv_t n1) (a2 b2: BV.bv_t n2) : Lemma (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2) == BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor_vec_append #n1 #n2 a1 b1 a2 b2 = Seq.lemma_eq_intro (Seq.append (BV.logor_vec a1 b1) (BV.logor_vec a2 b2)) (BV.logor_vec #(n1 + n2) (Seq.append a1 a2) (Seq.append b1 b2)) let logor (a b: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.logor #128 (v a) (v b))) = let r = { low = U64.logor a.low b.low; high = U64.logor a.high b.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); logor_vec_append (vec64 a.high) (vec64 b.high) (vec64 a.low) (vec64 b.low); to_vec_v a; to_vec_v b; assert (vec128 r == BV.logor_vec (vec128 a) (vec128 b)); r val lognot_vec_append (#n1 #n2: pos) (a1: BV.bv_t n1) (a2: BV.bv_t n2) : Lemma (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2) == BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot_vec_append #n1 #n2 a1 a2 = Seq.lemma_eq_intro (Seq.append (BV.lognot_vec a1) (BV.lognot_vec a2)) (BV.lognot_vec #(n1 + n2) (Seq.append a1 a2)) let lognot (a: t) : Pure t (requires True) (ensures (fun r -> v r = UInt.lognot #128 (v a))) = let r = { low = U64.lognot a.low; high = U64.lognot a.high } in to_vec_v r; assert (vec128 r == Seq.append (vec64 r.high) (vec64 r.low)); lognot_vec_append (vec64 a.high) (vec64 a.low); to_vec_v a; assert (vec128 r == BV.lognot_vec (vec128 a)); r let mod_mul_cancel (n:nat) (k:nat{k > 0}) : Lemma ((n * k) % k == 0) = mod_spec (n * k) k; mul_div_cancel n k; () let shift_past_mod (n:nat) (k1:nat) (k2:nat{k2 >= k1}) : Lemma ((n * pow2 k2) % pow2 k1 == 0) = assert (k2 == (k2 - k1) + k1); Math.pow2_plus (k2 - k1) k1; Math.paren_mul_right n (pow2 (k2 - k1)) (pow2 k1); mod_mul_cancel (n * pow2 (k2 - k1)) (pow2 k1) val mod_double: a:nat -> k:nat{k>0} -> Lemma (a % k % k == a % k) let mod_double a k = mod_mod a k 1 let shift_left_large_val (#n1:nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s:nat) : Lemma ((a1 + a2 * pow2 n1) * pow2 s == (a1 * pow2 s + a2 * pow2 (n1+s))) = Math.distributivity_add_left a1 (a2 * pow2 n1) (pow2 s); Math.paren_mul_right a2 (pow2 n1) (pow2 s); Math.pow2_plus n1 s #push-options "--z3rlimit 40" let shift_left_large_lemma (#n1: nat) (#n2: nat) (a1:UInt.uint_t n1) (a2:UInt.uint_t n2) (s: nat{s >= n2}) : Lemma (((a1 + a2 * pow2 n1) * pow2 s) % pow2 (n1+n2) == (a1 * pow2 s) % pow2 (n1+n2)) = shift_left_large_val a1 a2 s; mod_add (a1 * pow2 s) (a2 * pow2 (n1+s)) (pow2 (n1+n2)); shift_past_mod a2 (n1+n2) (n1+s); mod_double (a1 * pow2 s) (pow2 (n1+n2)); () #pop-options val shift_left_large_lemma_t : a:t -> s:nat -> Lemma (requires (s >= 64)) (ensures ((v a * pow2 s) % pow2 128 == (U64.v a.low * pow2 s) % pow2 128)) let shift_left_large_lemma_t a s = shift_left_large_lemma #64 #64 (U64.v a.low) (U64.v a.high) s private let u32_64: n:U32.t{U32.v n == 64} = U32.uint_to_t 64 val div_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (requires True) (ensures (a / pow2 (n1 - n2) == a * pow2 n2 / pow2 n1)) let div_pow2_diff a n1 n2 = Math.pow2_plus n2 (n1-n2); assert (a * pow2 n2 / pow2 n1 == a * pow2 n2 / (pow2 n2 * pow2 (n1 - n2))); div_product (a * pow2 n2) (pow2 n2) (pow2 (n1-n2)); mul_div_cancel a (pow2 n2) val mod_mul_pow2 : n:nat -> e1:nat -> e2:nat -> Lemma (n % pow2 e1 * pow2 e2 <= pow2 (e1+e2) - pow2 e2) let mod_mul_pow2 n e1 e2 = Math.lemma_mod_lt n (pow2 e1); Math.lemma_mult_le_right (pow2 e2) (n % pow2 e1) (pow2 e1 - 1); assert (n % pow2 e1 * pow2 e2 <= pow2 e1 * pow2 e2 - pow2 e2); Math.pow2_plus e1 e2 let pow2_div_bound #b (n:UInt.uint_t b) (s:nat{s <= b}) : Lemma (n / pow2 s < pow2 (b - s)) = Math.lemma_div_lt n b s #push-options "--smtencoding.l_arith_repr native --z3rlimit 40" let add_u64_shift_left (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r = (U64.v hi * pow2 (U32.v s)) % pow2 64 + U64.v lo / pow2 (64 - U32.v s))) = let high = U64.shift_left hi s in let low = U64.shift_right lo (U32.sub u32_64 s) in let s = U32.v s in let high_n = U64.v hi % pow2 (64 - s) * pow2 s in let low_n = U64.v lo / pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 s) (pow2 (64-s)); assert (U64.v high == high_n); assert (U64.v low == low_n); pow2_div_bound (U64.v lo) (64-s); assert (low_n < pow2 s); mod_mul_pow2 (U64.v hi) (64 - s) s; U64.add high low #pop-options let div_plus_multiple (a:nat) (b:nat) (k:pos) : Lemma (requires (a < k)) (ensures ((a + b * k) / k == b)) = Math.division_addition_lemma a k b; Math.small_division_lemma_1 a k val div_add_small: n:nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (k1*m / (k1*k2) == (n + k1*m) / (k1*k2))) let div_add_small n m k1 k2 = div_product (k1*m) k1 k2; div_product (n+k1*m) k1 k2; mul_div_cancel m k1; assert (k1*m/k1 == m); div_plus_multiple n m k1 val add_mod_small: n: nat -> m:nat -> k1:pos -> k2:pos -> Lemma (requires (n < k1)) (ensures (n + (k1 * m) % (k1 * k2) == (n + k1 * m) % (k1 * k2))) let add_mod_small n m k1 k2 = mod_spec (k1 * m) (k1 * k2); mod_spec (n + k1 * m) (k1 * k2); div_add_small n m k1 k2 let mod_then_mul_64 (n:nat) : Lemma (n % pow2 64 * pow2 64 == n * pow2 64 % pow2 128) = Math.pow2_plus 64 64; mod_mul n (pow2 64) (pow2 64) let mul_abc_to_acb (a b c: int) : Lemma (a * b * c == a * c * b) = () let add_u64_shift_left_respec (hi lo:U64.t) (s:U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r * pow2 64 == (U64.v hi * pow2 64) * pow2 (U32.v s) % pow2 128 + U64.v lo * pow2 (U32.v s) / pow2 64 * pow2 64)) = let r = add_u64_shift_left hi lo s in let hi = U64.v hi in let lo = U64.v lo in let s = U32.v s in // spec of add_u64_shift_left assert (U64.v r == hi * pow2 s % pow2 64 + lo / pow2 (64 - s)); Math.distributivity_add_left (hi * pow2 s % pow2 64) (lo / pow2 (64-s)) (pow2 64); mod_then_mul_64 (hi * pow2 s); assert (hi * pow2 s % pow2 64 * pow2 64 == (hi * pow2 s * pow2 64) % pow2 128); div_pow2_diff lo 64 s; assert (lo / pow2 (64-s) == lo * pow2 s / pow2 64); assert (U64.v r * pow2 64 == hi * pow2 s * pow2 64 % pow2 128 + lo * pow2 s / pow2 64 * pow2 64); mul_abc_to_acb hi (pow2 s) (pow2 64); r val add_mod_small' : n:nat -> m:nat -> k:pos -> Lemma (requires (n + m % k < k)) (ensures (n + m % k == (n + m) % k)) let add_mod_small' n m k = Math.lemma_mod_lt (n + m % k) k; Math.modulo_lemma n k; mod_add n m k #push-options "--retry 5" let shift_t_val (a: t) (s: nat) : Lemma (v a * pow2 s == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s)) = Math.pow2_plus 64 s; () #pop-options val mul_mod_bound : n:nat -> s1:nat -> s2:nat{s2>=s1} -> Lemma (n * pow2 s1 % pow2 s2 <= pow2 s2 - pow2 s1) #push-options "--retry 5" let mul_mod_bound n s1 s2 = // n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1 // n % pow2 (s2-s1) <= pow2 (s2-s1) - 1 // n % pow2 (s2-s1) * pow2 s1 <= pow2 s2 - pow2 s1 mod_mul n (pow2 s1) (pow2 (s2-s1)); // assert (n * pow2 s1 % pow2 s2 == n % pow2 (s2-s1) * pow2 s1); Math.lemma_mod_lt n (pow2 (s2-s1)); Math.lemma_mult_le_right (pow2 s1) (n % pow2 (s2-s1)) (pow2 (s2-s1) - 1); Math.pow2_plus (s2-s1) s1 #pop-options let add_lt_le (a a' b b': int) : Lemma (requires (a < a' /\ b <= b')) (ensures (a + b < a' + b')) = () let u64_pow2_bound (a: UInt.uint_t 64) (s: nat) : Lemma (a * pow2 s < pow2 (64+s)) = Math.pow2_plus 64 s; Math.lemma_mult_le_right (pow2 s) a (pow2 64) let shift_t_mod_val' (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + U64.v a.high * pow2 (64+s) % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in u64_pow2_bound a_l s; mul_mod_bound a_h (64+s) 128; // assert (a_h * pow2 (64+s) % pow2 128 <= pow2 128 - pow2 (64+s)); add_lt_le (a_l * pow2 s) (pow2 (64+s)) (a_h * pow2 (64+s) % pow2 128) (pow2 128 - pow2 (64+s)); add_mod_small' (a_l * pow2 s) (a_h * pow2 (64+s)) (pow2 128); shift_t_val a s; () let shift_t_mod_val (a: t) (s: nat{s < 64}) : Lemma ((v a * pow2 s) % pow2 128 == U64.v a.low * pow2 s + (U64.v a.high * pow2 64) * pow2 s % pow2 128) = let a_l = U64.v a.low in let a_h = U64.v a.high in shift_t_mod_val' a s; Math.pow2_plus 64 s; Math.paren_mul_right a_h (pow2 64) (pow2 s); () #push-options "--z3rlimit 20" let shift_left_small (a: t) (s: U32.t) : Pure t (requires (U32.v s < 64)) (ensures (fun r -> v r = (v a * pow2 (U32.v s)) % pow2 128)) = if U32.eq s 0ul then a else let r = { low = U64.shift_left a.low s; high = add_u64_shift_left_respec a.high a.low s; } in let s = U32.v s in let a_l = U64.v a.low in let a_h = U64.v a.high in mod_spec_rew_n (a_l * pow2 s) (pow2 64); shift_t_mod_val a s; r #pop-options val shift_left_large : a:t -> s:U32.t{U32.v s >= 64 /\ U32.v s < 128} -> r:t{v r = (v a * pow2 (U32.v s)) % pow2 128} #push-options "--z3rlimit 50 --retry 5" // sporadically fails let shift_left_large a s = let h_shift = U32.sub s u32_64 in assert (U32.v h_shift < 64); let r = { low = U64.uint_to_t 0; high = U64.shift_left a.low h_shift; } in assert (U64.v r.high == (U64.v a.low * pow2 (U32.v s - 64)) % pow2 64); mod_mul (U64.v a.low * pow2 (U32.v s - 64)) (pow2 64) (pow2 64); Math.pow2_plus (U32.v s - 64) 64; assert (U64.v r.high * pow2 64 == (U64.v a.low * pow2 (U32.v s)) % pow2 128); shift_left_large_lemma_t a (U32.v s); r #pop-options let shift_left a s = if (U32.lt s u32_64) then shift_left_small a s else shift_left_large a s let add_u64_shift_right (hi lo: U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 (64 - U32.v s) % pow2 64)) = let low = U64.shift_right lo s in let high = U64.shift_left hi (U32.sub u32_64 s) in let s = U32.v s in let low_n = U64.v lo / pow2 s in let high_n = U64.v hi % pow2 s * pow2 (64 - s) in Math.pow2_plus (64-s) s; mod_mul (U64.v hi) (pow2 (64-s)) (pow2 s); assert (U64.v high == high_n); pow2_div_bound (U64.v lo) s; assert (low_n < pow2 (64 - s)); mod_mul_pow2 (U64.v hi) s (64 - s); U64.add low high val mul_pow2_diff: a:nat -> n1:nat -> n2:nat{n2 <= n1} -> Lemma (a * pow2 (n1 - n2) == a * pow2 n1 / pow2 n2) let mul_pow2_diff a n1 n2 = Math.paren_mul_right a (pow2 (n1-n2)) (pow2 n2); mul_div_cancel (a * pow2 (n1 - n2)) (pow2 n2); Math.pow2_plus (n1 - n2) n2 let add_u64_shift_right_respec (hi lo:U64.t) (s: U32.t{U32.v s < 64}) : Pure U64.t (requires (U32.v s <> 0)) (ensures (fun r -> U64.v r == U64.v lo / pow2 (U32.v s) + U64.v hi * pow2 64 / pow2 (U32.v s) % pow2 64)) = let r = add_u64_shift_right hi lo s in let s = U32.v s in mul_pow2_diff (U64.v hi) 64 s; r let mul_div_spec (n:nat) (k:pos) : Lemma (n / k * k == n - n % k) = () let mul_distr_sub (n1 n2:nat) (k:nat) : Lemma ((n1 - n2) * k == n1 * k - n2 * k) = () val div_product_comm : n1:nat -> k1:pos -> k2:pos -> Lemma (n1 / k1 / k2 == n1 / k2 / k1) let div_product_comm n1 k1 k2 = div_product n1 k1 k2; div_product n1 k2 k1 val shift_right_reconstruct : a_h:UInt.uint_t 64 -> s:nat{s < 64} -> Lemma (a_h * pow2 (64-s) == a_h / pow2 s * pow2 64 + a_h * pow2 64 / pow2 s % pow2 64) let shift_right_reconstruct a_h s = mul_pow2_diff a_h 64 s; mod_spec_rew_n (a_h * pow2 (64-s)) (pow2 64); div_product_comm (a_h * pow2 64) (pow2 s) (pow2 64); mul_div_cancel a_h (pow2 64); assert (a_h / pow2 s * pow2 64 == a_h * pow2 64 / pow2 s / pow2 64 * pow2 64); () val u128_div_pow2 (a: t) (s:nat{s < 64}) : Lemma (v a / pow2 s == U64.v a.low / pow2 s + U64.v a.high * pow2 (64 - s)) let u128_div_pow2 a s = Math.pow2_plus (64-s) s; Math.paren_mul_right (U64.v a.high) (pow2 (64-s)) (pow2 s); Math.division_addition_lemma (U64.v a.low) (pow2 s) (U64.v a.high * pow2 (64 - s)) let shift_right_small (a: t) (s: U32.t{U32.v s < 64}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.eq s 0ul then a else let r = { low = add_u64_shift_right_respec a.high a.low s; high = U64.shift_right a.high s; } in let a_h = U64.v a.high in let a_l = U64.v a.low in let s = U32.v s in shift_right_reconstruct a_h s; assert (v r == a_h * pow2 (64-s) + a_l / pow2 s); u128_div_pow2 a s; r let shift_right_large (a: t) (s: U32.t{U32.v s >= 64 /\ U32.v s < 128}) : Pure t (requires True) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = let r = { high = U64.uint_to_t 0; low = U64.shift_right a.high (U32.sub s u32_64); } in let s = U32.v s in Math.pow2_plus 64 (s - 64); div_product (v a) (pow2 64) (pow2 (s - 64)); assert (v a / pow2 s == v a / pow2 64 / pow2 (s - 64)); div_plus_multiple (U64.v a.low) (U64.v a.high) (pow2 64); r let shift_right (a: t) (s: U32.t) : Pure t (requires (U32.v s < 128)) (ensures (fun r -> v r == v a / pow2 (U32.v s))) = if U32.lt s u32_64 then shift_right_small a s else shift_right_large a s let eq (a b:t) = U64.eq a.low b.low && U64.eq a.high b.high let gt (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gt a.low b.low) let lt (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lt a.low b.low) let gte (a b:t) = U64.gt a.high b.high || (U64.eq a.high b.high && U64.gte a.low b.low) let lte (a b:t) = U64.lt a.high b.high || (U64.eq a.high b.high && U64.lte a.low b.low) let u64_logand_comm (a b:U64.t) : Lemma (U64.logand a b == U64.logand b a) = UInt.logand_commutative (U64.v a) (U64.v b) val u64_and_0 (a b:U64.t) : Lemma (U64.v b = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] let u64_and_0 a b = UInt.logand_lemma_1 (U64.v a) let u64_0_and (a b:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.logand a b) = 0) [SMTPat (U64.logand a b)] = u64_logand_comm a b val u64_1s_and (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 /\ U64.v b = pow2 64 - 1 ==> U64.v (U64.logand a b) = pow2 64 - 1) [SMTPat (U64.logand a b)] let u64_1s_and a b = UInt.logand_lemma_2 (U64.v a) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a = v b ==> v r = pow2 128 - 1) /\ (v a <> v b ==> v r = 0))) = let mask = U64.logand (U64.eq_mask a.low b.low) (U64.eq_mask a.high b.high) in { low = mask; high = mask; } private let gte_characterization (a b: t) : Lemma (v a >= v b ==> U64.v a.high > U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low >= U64.v b.low)) = () private let lt_characterization (a b: t) : Lemma (v a < v b ==> U64.v a.high < U64.v b.high \/ (U64.v a.high = U64.v b.high /\ U64.v a.low < U64.v b.low)) = () let u64_logor_comm (a b:U64.t) : Lemma (U64.logor a b == U64.logor b a) = UInt.logor_commutative (U64.v a) (U64.v b) val u64_or_1 (a b:U64.t) : Lemma (U64.v b = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] let u64_or_1 a b = UInt.logor_lemma_2 (U64.v a) let u64_1_or (a b:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.logor a b) = pow2 64 - 1) [SMTPat (U64.logor a b)] = u64_logor_comm a b val u64_or_0 (a b:U64.t) : Lemma (U64.v a = 0 /\ U64.v b = 0 ==> U64.v (U64.logor a b) = 0) [SMTPat (U64.logor a b)] let u64_or_0 a b = UInt.logor_lemma_1 (U64.v a) val u64_not_0 (a:U64.t) : Lemma (U64.v a = 0 ==> U64.v (U64.lognot a) = pow2 64 - 1) [SMTPat (U64.lognot a)] let u64_not_0 a = UInt.lognot_lemma_1 #64 val u64_not_1 (a:U64.t) : Lemma (U64.v a = pow2 64 - 1 ==> U64.v (U64.lognot a) = 0) [SMTPat (U64.lognot a)] let u64_not_1 a = UInt.nth_lemma (UInt.lognot #64 (UInt.ones 64)) (UInt.zero 64) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun r -> (v a >= v b ==> v r = pow2 128 - 1) /\ (v a < v b ==> v r = 0))) = let mask_hi_gte = U64.logand (U64.gte_mask a.high b.high) (U64.lognot (U64.eq_mask a.high b.high)) in let mask_lo_gte = U64.logand (U64.eq_mask a.high b.high) (U64.gte_mask a.low b.low) in let mask = U64.logor mask_hi_gte mask_lo_gte in gte_characterization a b; lt_characterization a b; { low = mask; high = mask; } let uint64_to_uint128 (a:U64.t) = { low = a; high = U64.uint_to_t 0; } let uint128_to_uint64 (a:t) : b:U64.t{U64.v b == v a % pow2 64} = a.low inline_for_extraction let u64_l32_mask: x:U64.t{U64.v x == pow2 32 - 1} = U64.uint_to_t 0xffffffff let u64_mod_32 (a: U64.t) : Pure U64.t (requires True) (ensures (fun r -> U64.v r = U64.v a % pow2 32)) = UInt.logand_mask (U64.v a) 32; U64.logand a u64_l32_mask let u64_32_digits (a: U64.t) : Lemma (U64.v a / pow2 32 * pow2 32 + U64.v a % pow2 32 == U64.v a) = div_mod (U64.v a) (pow2 32) val mul32_digits : x:UInt.uint_t 64 -> y:UInt.uint_t 32 -> Lemma (x * y == (x / pow2 32 * y) * pow2 32 + (x % pow2 32) * y) let mul32_digits x y = () let u32_32 : x:U32.t{U32.v x == 32} = U32.uint_to_t 32 #push-options "--z3rlimit 30" let u32_combine (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi % pow2 32 * pow2 32 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) #pop-options let product_bound (a b:nat) (k:pos) : Lemma (requires (a < k /\ b < k)) (ensures a * b <= k * k - 2*k + 1) = Math.lemma_mult_le_right b a (k-1); Math.lemma_mult_le_left (k-1) b (k-1) val uint_product_bound : #n:nat -> a:UInt.uint_t n -> b:UInt.uint_t n -> Lemma (a * b <= pow2 (2*n) - 2*(pow2 n) + 1) let uint_product_bound #n a b = product_bound a b (pow2 n); Math.pow2_plus n n val u32_product_bound : a:nat{a < pow2 32} -> b:nat{b < pow2 32} -> Lemma (UInt.size (a * b) 64 /\ a * b < pow2 64 - pow2 32 - 1) let u32_product_bound a b = uint_product_bound #32 a b let mul32 x y = let x0 = u64_mod_32 x in let x1 = U64.shift_right x u32_32 in u32_product_bound (U64.v x0) (U32.v y); let x0y = U64.mul x0 (FStar.Int.Cast.uint32_to_uint64 y) in let x0yl = u64_mod_32 x0y in let x0yh = U64.shift_right x0y u32_32 in u32_product_bound (U64.v x1) (U32.v y); // not in the original C code let x1y' = U64.mul x1 (FStar.Int.Cast.uint32_to_uint64 y) in let x1y = U64.add x1y' x0yh in // correspondence with C: // r0 = r.low // r0 is written using u32_combine hi lo = lo + hi << 32 // r1 = r.high let r = { low = u32_combine x1y x0yl; high = U64.shift_right x1y u32_32; } in u64_32_digits x; //assert (U64.v x == U64.v x1 * pow2 32 + U64.v x0); assert (U64.v x0y == U64.v x0 * U32.v y); u64_32_digits x0y; //assert (U64.v x0y == U64.v x0yh * pow2 32 + U64.v x0yl); assert (U64.v x1y' == U64.v x / pow2 32 * U32.v y); mul32_digits (U64.v x) (U32.v y); assert (U64.v x * U32.v y == U64.v x1y' * pow2 32 + U64.v x0y); r let l32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x % pow2 32 let h32 (x: UInt.uint_t 64) : UInt.uint_t 32 = x / pow2 32 val mul32_bound : x:UInt.uint_t 32 -> y:UInt.uint_t 32 -> n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1 /\ n == x * y} let mul32_bound x y = u32_product_bound x y; x * y let pll (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (l32 (U64.v y)) let plh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (l32 (U64.v x)) (h32 (U64.v y)) let phl (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (l32 (U64.v y)) let phh (x y: U64.t) : n:UInt.uint_t 64{n < pow2 64 - pow2 32 - 1} = mul32_bound (h32 (U64.v x)) (h32 (U64.v y)) let pll_l (x y: U64.t) : UInt.uint_t 32 = l32 (pll x y) let pll_h (x y: U64.t) : UInt.uint_t 32 = h32 (pll x y) let mul_wide_low (x y: U64.t) = (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y let mul_wide_high (x y: U64.t) = phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32 inline_for_extraction noextract let mul_wide_impl_t' (x y: U64.t) : Pure (tuple4 U64.t U64.t U64.t U64.t) (requires True) (ensures (fun r -> let (u1, w3, x', t') = r in U64.v u1 == U64.v x % pow2 32 /\ U64.v w3 == pll_l x y /\ U64.v x' == h32 (U64.v x) /\ U64.v t' == phl x y + pll_h x y)) = let u1 = u64_mod_32 x in let v1 = u64_mod_32 y in u32_product_bound (U64.v u1) (U64.v v1); let t = U64.mul u1 v1 in assert (U64.v t == pll x y); let w3 = u64_mod_32 t in assert (U64.v w3 == pll_l x y); let k = U64.shift_right t u32_32 in assert (U64.v k == pll_h x y); let x' = U64.shift_right x u32_32 in assert (U64.v x' == h32 (U64.v x)); u32_product_bound (U64.v x') (U64.v v1); let t' = U64.add (U64.mul x' v1) k in (u1, w3, x', t') // similar to u32_combine, but use % 2^64 * 2^32 let u32_combine' (hi lo: U64.t) : Pure U64.t (requires (U64.v lo < pow2 32)) (ensures (fun r -> U64.v r = U64.v hi * pow2 32 % pow2 64 + U64.v lo)) = U64.add lo (U64.shift_left hi u32_32) inline_for_extraction noextract let mul_wide_impl (x: U64.t) (y: U64.t) : Tot (r:t{U64.v r.low == mul_wide_low x y /\ U64.v r.high == mul_wide_high x y % pow2 64}) = let (u1, w3, x', t') = mul_wide_impl_t' x y in let k' = u64_mod_32 t' in let w1 = U64.shift_right t' u32_32 in assert (U64.v w1 == (phl x y + pll_h x y) / pow2 32); let y' = U64.shift_right y u32_32 in assert (U64.v y' == h32 (U64.v y)); u32_product_bound (U64.v u1) (U64.v y'); let t'' = U64.add (U64.mul u1 y') k' in assert (U64.v t'' == plh x y + (phl x y + pll_h x y) % pow2 32); let k'' = U64.shift_right t'' u32_32 in assert (U64.v k'' == (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32); u32_product_bound (U64.v x') (U64.v y'); mod_mul_pow2 (U64.v t'') 32 64; let r0 = u32_combine' t'' w3 in // let r0 = U64.add (U64.shift_left t'' u32_32) w3 in assert (U64.v r0 == (plh x y + (phl x y + pll_h x y) % pow2 32) * pow2 32 % pow2 64 + pll_l x y); let xy_w1 = U64.add (U64.mul x' y') w1 in assert (U64.v xy_w1 == phh x y + (phl x y + pll_h x y) / pow2 32); let r1 = U64.add_mod xy_w1 k'' in assert (U64.v r1 == (phh x y + (phl x y + pll_h x y) / pow2 32 + (plh x y + (phl x y + pll_h x y) % pow2 32) / pow2 32) % pow2 64); let r = { low = r0; high = r1; } in r let product_sums (a b c d:nat) : Lemma ((a + b) * (c + d) == a * c + a * d + b * c + b * d) = () val u64_32_product (xl xh yl yh:UInt.uint_t 32) : Lemma ((xl + xh * pow2 32) * (yl + yh * pow2 32) == xl * yl + (xl * yh) * pow2 32 + (xh * yl) * pow2 32 + (xh * yh) * pow2 64) #push-options "--z3rlimit 25" let u64_32_product xl xh yl yh = assert (xh >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (pow2 32 >= 0); //flakiness; without this, can't prove that (xh * pow2 32) >= 0 assert (xh*pow2 32 >= 0); product_sums xl (xh*pow2 32) yl (yh*pow2 32); mul_abc_to_acb xh (pow2 32) yl; assert (xl * (yh * pow2 32) == (xl * yh) * pow2 32); Math.pow2_plus 32 32; assert ((xh * pow2 32) * (yh * pow2 32) == (xh * yh) * pow2 64) #pop-options let product_expand (x y: U64.t) : Lemma (U64.v x * U64.v y == phh x y * pow2 64 + (plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) = assert (U64.v x == l32 (U64.v x) + h32 (U64.v x) * pow2 32); assert (U64.v y == l32 (U64.v y) + h32 (U64.v y) * pow2 32); u64_32_product (l32 (U64.v x)) (h32 (U64.v x)) (l32 (U64.v y)) (h32 (U64.v y)) let product_low_expand (x y: U64.t) : Lemma ((U64.v x * U64.v y) % pow2 64 == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64) = product_expand x y; Math.lemma_mod_plus ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) (phh x y) (pow2 64) let add_mod_then_mod (n m:nat) (k:pos) : Lemma ((n + m % k) % k == (n + m) % k) = mod_add n m k; mod_add n (m % k) k; mod_double m k let shift_add (n:nat) (m:nat{m < pow2 32}) : Lemma (n * pow2 32 % pow2 64 + m == (n * pow2 32 + m) % pow2 64) = add_mod_small' m (n*pow2 32) (pow2 64) let mul_wide_low_ok (x y: U64.t) : Lemma (mul_wide_low x y == (U64.v x * U64.v y) % pow2 64) = Math.pow2_plus 32 32; mod_mul (plh x y + (phl x y + pll_h x y) % pow2 32) (pow2 32) (pow2 32); assert (mul_wide_low x y == (plh x y + (phl x y + pll_h x y) % pow2 32) % pow2 32 * pow2 32 + pll_l x y); add_mod_then_mod (plh x y) (phl x y + pll_h x y) (pow2 32); assert (mul_wide_low x y == (plh x y + phl x y + pll_h x y) % pow2 32 * pow2 32 + pll_l x y); mod_mul (plh x y + phl x y + pll_h x y) (pow2 32) (pow2 32); shift_add (plh x y + phl x y + pll_h x y) (pll_l x y); assert (mul_wide_low x y == ((plh x y + phl x y + pll_h x y) * pow2 32 + pll_l x y) % pow2 64); product_low_expand x y val product_high32 : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 32 == phh x y * pow2 32 + plh x y + phl x y + pll_h x y) #push-options "--z3rlimit 20" let product_high32 x y = Math.pow2_plus 32 32; product_expand x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y * pow2 32); mul_div_cancel (phh x y * pow2 32) (pow2 32); mul_div_cancel (plh x y + phl x y + pll_h x y) (pow2 32); Math.small_division_lemma_1 (pll_l x y) (pow2 32) #pop-options val product_high_expand : x:U64.t -> y:U64.t -> Lemma ((U64.v x * U64.v y) / pow2 64 == phh x y + (plh x y + phl x y + pll_h x y) / pow2 32) #push-options "--z3rlimit 15 --retry 5" // sporadically fails let product_high_expand x y = Math.pow2_plus 32 32; div_product (mul_wide_high x y) (pow2 32) (pow2 32); product_high32 x y; Math.division_addition_lemma (plh x y + phl x y + pll_h x y) (pow2 32) (phh x y); () #pop-options val mod_spec_multiply : n:nat -> k:pos -> Lemma ((n - n%k) / k * k == n - n%k) let mod_spec_multiply n k = Math.lemma_mod_spec2 n k val mod_spec_mod (n:nat) (k:pos) : Lemma ((n - n%k) % k == 0) let mod_spec_mod n k = assert (n - n%k == n / k * k); Math.multiple_modulo_lemma (n/k) k let mul_injective (n m:nat) (k:pos) : Lemma (requires (n * k == m * k)) (ensures (n == m)) = () val div_sum_combine1 : n:nat -> m:nat -> k:pos -> Lemma ((n / k + m / k) * k == (n - n % k) + (m - m % k)) let div_sum_combine1 n m k = Math.distributivity_add_left (n / k) (m / k) k; div_mod n k; div_mod m k; () let mod_0 (k:pos) : Lemma (0 % k == 0) = () let n_minus_mod_exact (n:nat) (k:pos) : Lemma ((n - n % k) % k == 0) = mod_spec_mod n k; mod_0 k let sub_mod_gt_0 (n:nat) (k:pos) : Lemma (0 <= n - n % k) = () val sum_rounded_mod_exact : n:nat -> m:nat -> k:pos -> Lemma (((n - n%k) + (m - m%k)) / k * k == (n - n%k) + (m - m%k)) #push-options "--retry 5" // sporadically fails let sum_rounded_mod_exact n m k = n_minus_mod_exact n k; n_minus_mod_exact m k; sub_mod_gt_0 n k; sub_mod_gt_0 m k; mod_add (n - n%k) (m - m%k) k; Math.div_exact_r ((n - n%k) + (m - m % k)) k #pop-options val div_sum_combine : n:nat -> m:nat -> k:pos -> Lemma (n / k + m / k == (n + (m - n % k) - m % k) / k) #push-options "--retry 5" // sporadically fails let div_sum_combine n m k = sum_rounded_mod_exact n m k; div_sum_combine1 n m k; mul_injective (n / k + m / k) (((n - n%k) + (m - m%k)) / k) k; assert (n + m - n % k - m % k == (n - n%k) + (m - m%k)) #pop-options val sum_shift_carry : a:nat -> b:nat -> k:pos -> Lemma (a / k + (b + a%k) / k == (a + b) / k) let sum_shift_carry a b k = div_sum_combine a (b+a%k) k; // assert (a / k + (b + a%k) / k == (a + b + (a % k - a % k) - (b + a%k) % k) / k); // assert ((a + b + (a % k - a % k) - (b + a%k) % k) / k == (a + b - (b + a%k) % k) / k); add_mod_then_mod b a k; Math.lemma_mod_spec (a+b) k let mul_wide_high_ok (x y: U64.t) : Lemma ((U64.v x * U64.v y) / pow2 64 == mul_wide_high x y) = product_high_expand x y; sum_shift_carry (phl x y + pll_h x y) (plh x y) (pow2 32) let product_div_bound (#n:pos) (x y: UInt.uint_t n) : Lemma (x * y / pow2 n < pow2 n) = Math.pow2_plus n n; product_bound x y (pow2 n); pow2_div_bound #(n+n) (x * y) n
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.BV.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BV.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt128.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.BV", "short_module": "TBV" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "UInt" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure FStar.UInt128.t
Prims.Pure
[]
[]
[ "FStar.UInt64.t", "FStar.UInt128.mul_wide_impl", "Prims.unit", "FStar.Math.Lemmas.modulo_lemma", "FStar.UInt128.mul_wide_high", "Prims.pow2", "FStar.UInt128.product_div_bound", "FStar.UInt64.n", "FStar.UInt64.v", "FStar.UInt128.mul_wide_high_ok", "FStar.UInt128.mul_wide_low_ok", "FStar.UInt128.t", "Prims.l_True", "Prims.eq2", "Prims.int", "FStar.UInt128.v", "FStar.Mul.op_Star" ]
[]
false
false
false
false
false
let mul_wide (x y: U64.t) : Pure t (requires True) (ensures (fun r -> v r == U64.v x * U64.v y)) =
mul_wide_low_ok x y; mul_wide_high_ok x y; product_div_bound (U64.v x) (U64.v y); Math.modulo_lemma (mul_wide_high x y) (pow2 64); mul_wide_impl x y
false
Hacl.Spec.P256.PrecompTable.fsti
Hacl.Spec.P256.PrecompTable.felem_list
val felem_list : Type0
let felem_list = x:list uint64{FL.length x == 4}
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 19, "start_col": 0, "start_line": 19 }
module Hacl.Spec.P256.PrecompTable open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Impl.P256.Point module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery module FL = FStar.List.Tot #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3]
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.PrecompTable.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Lib.IntTypes.uint64", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length" ]
[]
false
false
false
true
true
let felem_list =
x: list uint64 {FL.length x == 4}
false
Hacl.Spec.P256.PrecompTable.fsti
Hacl.Spec.P256.PrecompTable.create4
val create4 (x0 x1 x2 x3: uint64) : list uint64
val create4 (x0 x1 x2 x3: uint64) : list uint64
let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3]
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 16, "start_col": 0, "start_line": 16 }
module Hacl.Spec.P256.PrecompTable open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Impl.P256.Point module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery module FL = FStar.List.Tot #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.PrecompTable.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x0: Lib.IntTypes.uint64 -> x1: Lib.IntTypes.uint64 -> x2: Lib.IntTypes.uint64 -> x3: Lib.IntTypes.uint64 -> Prims.list Lib.IntTypes.uint64
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.uint64", "Prims.Cons", "Prims.Nil", "Prims.list" ]
[]
false
false
false
true
false
let create4 (x0 x1 x2 x3: uint64) : list uint64 =
[x0; x1; x2; x3]
false
Hacl.Spec.P256.PrecompTable.fsti
Hacl.Spec.P256.PrecompTable.point_list
val point_list : Type0
let point_list = x:list uint64{FL.length x == 12}
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 21, "start_col": 0, "start_line": 21 }
module Hacl.Spec.P256.PrecompTable open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Impl.P256.Point module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery module FL = FStar.List.Tot #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3] inline_for_extraction noextract let felem_list = x:list uint64{FL.length x == 4}
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.PrecompTable.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Lib.IntTypes.uint64", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length" ]
[]
false
false
false
true
true
let point_list =
x: list uint64 {FL.length x == 12}
false
FStar.OrdSet.fsti
FStar.OrdSet.mem_of
val mem_of : s: FStar.OrdSet.ordset a f -> x: a -> Prims.bool
let mem_of #a #f (s:ordset a f) x = mem x s
{ "file_name": "ulib/experimental/FStar.OrdSet.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 45, "start_col": 7, "start_line": 45 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type total_order (a:eqtype) (f: (a -> a -> Tot bool)) = (forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f} let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool = match l with | [] -> true | x::[] -> true | x::y::tl -> f x y && x <> y && sorted f (y::tl) val ordset (a:eqtype) (f:cmp a) : Type0 val hasEq_ordset: a:eqtype -> f:cmp a -> Lemma (requires (True)) (ensures (hasEq (ordset a f))) [SMTPat (hasEq (ordset a f))] val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f) val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.OrdSet.fsti" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> x: a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.mem", "Prims.bool" ]
[]
false
false
false
false
false
let mem_of #a #f (s: ordset a f) x =
mem x s
false
FStar.OrdSet.fsti
FStar.OrdSet.strict_superset
val strict_superset (#a #f: _) (s1 s2: ordset a f) : Tot bool
val strict_superset (#a #f: _) (s1 s2: ordset a f) : Tot bool
let strict_superset #a #f (s1 s2: ordset a f) : Tot bool = strict_subset s2 s1
{ "file_name": "ulib/experimental/FStar.OrdSet.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 88, "start_col": 0, "start_line": 88 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type total_order (a:eqtype) (f: (a -> a -> Tot bool)) = (forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f} let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool = match l with | [] -> true | x::[] -> true | x::y::tl -> f x y && x <> y && sorted f (y::tl) val ordset (a:eqtype) (f:cmp a) : Type0 val hasEq_ordset: a:eqtype -> f:cmp a -> Lemma (requires (True)) (ensures (hasEq (ordset a f))) [SMTPat (hasEq (ordset a f))] val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f) val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool (* currying-friendly version of mem, ready to be used as a lambda *) unfold let mem_of #a #f (s:ordset a f) x = mem x s val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s}) (* liat is the reverse of tail, i.e. a list of all but the last element. A shortcut to (fst (unsnoc s)), which as a word is composed in a remarkably similar fashion. *) val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then (l <> empty) && (head s = head l) else true) }) val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){ p = (liat s, last s) }) val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{ sorted f l /\ (forall x. (List.Tot.mem x l = mem x s)) }) val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f) (requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l)) val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a) val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f) val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1 val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f) val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.OrdSet.fsti" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.strict_subset", "Prims.bool" ]
[]
false
false
false
false
false
let strict_superset #a #f (s1: ordset a f) (s2: ordset a f) : Tot bool =
strict_subset s2 s1
false
FStar.OrdSet.fsti
FStar.OrdSet.superset
val superset (#a #f: _) (s1 s2: ordset a f) : Tot bool
val superset (#a #f: _) (s1 s2: ordset a f) : Tot bool
let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1
{ "file_name": "ulib/experimental/FStar.OrdSet.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 81, "start_col": 0, "start_line": 81 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type total_order (a:eqtype) (f: (a -> a -> Tot bool)) = (forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f} let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool = match l with | [] -> true | x::[] -> true | x::y::tl -> f x y && x <> y && sorted f (y::tl) val ordset (a:eqtype) (f:cmp a) : Type0 val hasEq_ordset: a:eqtype -> f:cmp a -> Lemma (requires (True)) (ensures (hasEq (ordset a f))) [SMTPat (hasEq (ordset a f))] val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f) val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool (* currying-friendly version of mem, ready to be used as a lambda *) unfold let mem_of #a #f (s:ordset a f) x = mem x s val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s}) (* liat is the reverse of tail, i.e. a list of all but the last element. A shortcut to (fst (unsnoc s)), which as a word is composed in a remarkably similar fashion. *) val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then (l <> empty) && (head s = head l) else true) }) val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){ p = (liat s, last s) }) val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{ sorted f l /\ (forall x. (List.Tot.mem x l = mem x s)) }) val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f) (requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l)) val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a) val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f) val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.OrdSet.fsti" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.subset", "Prims.bool" ]
[]
false
false
false
false
false
let superset #a #f (s1: ordset a f) (s2: ordset a f) : Tot bool =
subset s2 s1
false
FStar.OrdSet.fsti
FStar.OrdSet.equal
val equal (#a: eqtype) (#f: cmp a) (s1 s2: ordset a f) : Tot prop
val equal (#a: eqtype) (#f: cmp a) (s1 s2: ordset a f) : Tot prop
let equal (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Tot prop = forall x. mem #_ #f x s1 = mem #_ #f x s2
{ "file_name": "ulib/experimental/FStar.OrdSet.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 93, "start_col": 0, "start_line": 92 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type total_order (a:eqtype) (f: (a -> a -> Tot bool)) = (forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f} let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool = match l with | [] -> true | x::[] -> true | x::y::tl -> f x y && x <> y && sorted f (y::tl) val ordset (a:eqtype) (f:cmp a) : Type0 val hasEq_ordset: a:eqtype -> f:cmp a -> Lemma (requires (True)) (ensures (hasEq (ordset a f))) [SMTPat (hasEq (ordset a f))] val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f) val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool (* currying-friendly version of mem, ready to be used as a lambda *) unfold let mem_of #a #f (s:ordset a f) x = mem x s val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s}) (* liat is the reverse of tail, i.e. a list of all but the last element. A shortcut to (fst (unsnoc s)), which as a word is composed in a remarkably similar fashion. *) val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then (l <> empty) && (head s = head l) else true) }) val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){ p = (liat s, last s) }) val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{ sorted f l /\ (forall x. (List.Tot.mem x l = mem x s)) }) val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f) (requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l)) val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a) val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f) val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1 val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f) val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val strict_subset: #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool let strict_superset #a #f (s1 s2: ordset a f) : Tot bool = strict_subset s2 s1 let disjoint #a #f (s1 s2 : ordset a f) : Tot bool = intersect s1 s2 = empty
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.OrdSet.fsti" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.l_Forall", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "FStar.OrdSet.mem", "Prims.prop" ]
[]
false
false
false
false
true
let equal (#a: eqtype) (#f: cmp a) (s1 s2: ordset a f) : Tot prop =
forall x. mem #_ #f x s1 = mem #_ #f x s2
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.notin
val notin (#a: eqtype) (x: a) (s: set a) : bool
val notin (#a: eqtype) (x: a) (s: set a) : bool
let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 15, "end_line": 150, "start_col": 0, "start_line": 148 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.FiniteSet.Base.set a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.op_Negation", "FStar.FiniteSet.Base.mem", "Prims.bool" ]
[]
false
false
false
false
false
let notin (#a: eqtype) (x: a) (s: set a) : bool =
not (mem x s)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.empty_set_contains_no_elements_fact
val empty_set_contains_no_elements_fact : Prims.logical
let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a))
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 81, "end_line": 166, "start_col": 0, "start_line": 165 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "Prims.b2t", "Prims.op_Negation", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.emptyset" ]
[]
false
false
false
true
true
let empty_set_contains_no_elements_fact =
forall (a: eqtype) (o: a). {:pattern mem o (emptyset)} not (mem o (emptyset #a))
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.remove
val remove (#a: eqtype) (x: a) (s: set a) : set a
val remove (#a: eqtype) (x: a) (s: set a) : set a
let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 146, "start_col": 0, "start_line": 144 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`:
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.FiniteSet.Base.set a -> FStar.FiniteSet.Base.set a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FiniteSet.Base.difference", "FStar.FiniteSet.Base.singleton" ]
[]
false
false
false
false
false
let remove (#a: eqtype) (x: a) (s: set a) : set a =
difference s (singleton x)
false
FStar.OrdSet.fsti
FStar.OrdSet.sorted
val sorted (#a: eqtype) (f: cmp a) (l: list a) : Tot bool
val sorted (#a: eqtype) (f: cmp a) (l: list a) : Tot bool
let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool = match l with | [] -> true | x::[] -> true | x::y::tl -> f x y && x <> y && sorted f (y::tl)
{ "file_name": "ulib/experimental/FStar.OrdSet.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 29, "start_col": 0, "start_line": 25 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type total_order (a:eqtype) (f: (a -> a -> Tot bool)) = (forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.OrdSet.fsti" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: FStar.OrdSet.cmp a -> l: Prims.list a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "Prims.list", "Prims.op_AmpAmp", "Prims.op_disEquality", "FStar.OrdSet.sorted", "Prims.Cons", "Prims.bool" ]
[ "recursion" ]
false
false
false
false
false
let rec sorted (#a: eqtype) (f: cmp a) (l: list a) : Tot bool =
match l with | [] -> true | x :: [] -> true | x :: y :: tl -> f x y && x <> y && sorted f (y :: tl)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.singleton_contains_argument_fact
val singleton_contains_argument_fact : Prims.logical
let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 184, "start_col": 0, "start_line": 183 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.singleton" ]
[]
false
false
false
true
true
let singleton_contains_argument_fact =
forall (a: eqtype) (r: a). {:pattern singleton r} mem r (singleton r)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.singleton_contains_fact
val singleton_contains_fact : Prims.logical
let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 97, "end_line": 191, "start_col": 0, "start_line": 190 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "Prims.l_iff", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.singleton", "Prims.eq2" ]
[]
false
false
false
true
true
let singleton_contains_fact =
forall (a: eqtype) (r: a) (o: a). {:pattern mem o (singleton r)} mem o (singleton r) <==> r == o
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.singleton_cardinality_fact
val singleton_cardinality_fact : Prims.logical
let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 94, "end_line": 198, "start_col": 0, "start_line": 197 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.singleton" ]
[]
false
false
false
true
true
let singleton_cardinality_fact =
forall (a: eqtype) (r: a). {:pattern cardinality (singleton r)} cardinality (singleton r) = 1
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.length_zero_fact
val length_zero_fact : Prims.logical
let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 177, "start_col": 0, "start_line": 174 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x])));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_and", "Prims.l_iff", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.FiniteSet.Base.cardinality", "Prims.eq2", "FStar.FiniteSet.Base.emptyset", "Prims.op_disEquality", "Prims.l_Exists", "FStar.FiniteSet.Base.mem" ]
[]
false
false
false
true
true
let length_zero_fact =
forall (a: eqtype) (s: set a). {:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
false
FStar.OrdSet.fsti
FStar.OrdSet.disjoint
val disjoint (#a #f: _) (s1 s2: ordset a f) : Tot bool
val disjoint (#a #f: _) (s1 s2: ordset a f) : Tot bool
let disjoint #a #f (s1 s2 : ordset a f) : Tot bool = intersect s1 s2 = empty
{ "file_name": "ulib/experimental/FStar.OrdSet.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 90, "start_col": 0, "start_line": 90 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type total_order (a:eqtype) (f: (a -> a -> Tot bool)) = (forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f} let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool = match l with | [] -> true | x::[] -> true | x::y::tl -> f x y && x <> y && sorted f (y::tl) val ordset (a:eqtype) (f:cmp a) : Type0 val hasEq_ordset: a:eqtype -> f:cmp a -> Lemma (requires (True)) (ensures (hasEq (ordset a f))) [SMTPat (hasEq (ordset a f))] val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f) val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool (* currying-friendly version of mem, ready to be used as a lambda *) unfold let mem_of #a #f (s:ordset a f) x = mem x s val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s}) (* liat is the reverse of tail, i.e. a list of all but the last element. A shortcut to (fst (unsnoc s)), which as a word is composed in a remarkably similar fashion. *) val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then (l <> empty) && (head s = head l) else true) }) val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){ p = (liat s, last s) }) val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{ sorted f l /\ (forall x. (List.Tot.mem x l = mem x s)) }) val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f) (requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l)) val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a) val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f) val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1 val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f) val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val strict_subset: #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool let strict_superset #a #f (s1 s2: ordset a f) : Tot bool = strict_subset s2 s1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.OrdSet.fsti" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_Equality", "FStar.OrdSet.intersect", "FStar.OrdSet.empty", "Prims.bool" ]
[]
false
false
false
false
false
let disjoint #a #f (s1: ordset a f) (s2: ordset a f) : Tot bool =
intersect s1 s2 = empty
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.list_nonrepeating
val list_nonrepeating (#a: eqtype) (xs: list a) : bool
val list_nonrepeating (#a: eqtype) (xs: list a) : bool
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 60, "start_col": 0, "start_line": 57 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`:
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xs: Prims.list a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "Prims.list", "Prims.op_AmpAmp", "Prims.op_Negation", "FStar.List.Tot.Base.mem", "FStar.FiniteSet.Base.list_nonrepeating", "Prims.bool" ]
[ "recursion" ]
false
false
false
false
false
let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool =
match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.insert_fact
val insert_fact : Prims.logical
let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 207, "start_col": 0, "start_line": 205 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_iff", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.insert", "Prims.l_or", "Prims.eq2" ]
[]
false
false
false
true
true
let insert_fact =
forall (a: eqtype) (s: set a) (x: a) (o: a). {:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.insert_contains_argument_fact
val insert_contains_argument_fact : Prims.logical
let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 216, "start_col": 0, "start_line": 214 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.insert" ]
[]
false
false
false
true
true
let insert_contains_argument_fact =
forall (a: eqtype) (s: set a) (x: a). {:pattern insert x s} mem x (insert x s)
false
Spec.Blake2.Alternative.fst
Spec.Blake2.Alternative.lemma_spec_equivalence_update
val lemma_spec_equivalence_update: a:alg -> kk:size_nat{kk <= max_key a} -> k:lbytes kk -> d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a} -> s:state a -> Lemma (blake2_update a kk k d s `Seq.equal` blake2_update' a kk k d s)
val lemma_spec_equivalence_update: a:alg -> kk:size_nat{kk <= max_key a} -> k:lbytes kk -> d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a} -> s:state a -> Lemma (blake2_update a kk k d s `Seq.equal` blake2_update' a kk k d s)
let lemma_spec_equivalence_update a kk k d s = let ll = length d in let key_block: bytes = if kk > 0 then blake2_key_block a kk k else Seq.empty in if kk = 0 then begin assert (key_block `Seq.equal` Seq.empty); assert ((key_block `Seq.append` d) `Seq.equal` d); () end else if ll = 0 then let (nb,rem) = split a (length (blake2_key_block a kk k)) in // let s = repeati nb (blake2_update1 a prev (blake2_key_block a kk k)) s in calc (Seq.equal) { blake2_update a kk k d s; (Seq.equal) {} blake2_update_key a kk k ll s; (Seq.equal) {} blake2_update_block a true (size_block a) (blake2_key_block a kk k) s; (Seq.equal) { Lib.LoopCombinators.eq_repeati0 nb (blake2_update1 a 0 (blake2_key_block a kk k)) s } blake2_update_blocks a 0 (blake2_key_block a kk k) s; (Seq.equal) { Seq.append_empty_r (blake2_key_block a kk k) } blake2_update_blocks a 0 (blake2_key_block a kk k `Seq.append` Seq.empty) s; (Seq.equal) { Seq.lemma_empty d } blake2_update_blocks a 0 (blake2_key_block a kk k `Seq.append` d) s; (Seq.equal) { } blake2_update' a kk k d s; }; () else let (nb,rem) = split a (length (blake2_key_block a kk k `Seq.append` d)) in calc (Seq.equal) { blake2_update a kk k d s; (Seq.equal) {} blake2_update_blocks a (size_block a) d (blake2_update_key a kk k ll s); (Seq.equal) {} blake2_update_blocks a (size_block a) d (blake2_update_block a false (size_block a) (blake2_key_block a kk k) s); (Seq.equal) { lemma_unfold_update_blocks a (blake2_key_block a kk k) d s } blake2_update_blocks a 0 (blake2_key_block a kk k `Seq.append` d) s; }
{ "file_name": "specs/lemmas/Spec.Blake2.Alternative.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 136, "start_col": 0, "start_line": 100 }
module Spec.Blake2.Alternative open Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Lems = Lib.Sequence.Lemmas module UpdateMulti = Lib.UpdateMulti #set-options "--fuel 0 --ifuel 0 --z3rlimit 50" val lemma_shift_update_last: a:alg -> rem: nat -> b:block_s a -> d:bytes{length d + (size_block a) <= max_limb a /\ rem <= length d /\ rem <= size_block a} -> s:state a -> Lemma ( blake2_update_last a 0 rem (b `Seq.append` d) s == blake2_update_last a (size_block a) rem d s ) let lemma_shift_update_last a rem b d s = let m = b `Seq.append` d in assert (Seq.slice m (length m - rem) (length m) `Seq.equal` Seq.slice d (length d - rem) (length d)); assert (get_last_padded_block a (b `Seq.append` d) rem == get_last_padded_block a d rem) val lemma_update1_shift: a:alg -> b:block_s a -> d:bytes{length d + (size_block a) <= max_limb a} -> i:nat{i < length d / size_block a /\ (size_block a) + length d <= max_limb a} -> s:state a -> Lemma ( blake2_update1 a 0 (b `Seq.append` d) (i + 1) s == blake2_update1 a (size_block a) d i s ) let lemma_update1_shift a b d i s = assert (get_blocki a (b `Seq.append` d) (i + 1) `Seq.equal` get_blocki a d i) val repeati_update1: a:alg -> b:block_s a -> d:bytes{length d + (size_block a) <= max_limb a} -> nb:nat{nb > 0 /\ nb <= length (b `Seq.append` d) / size_block a} -> s:state a -> Lemma ( repeati nb (blake2_update1 a 0 (b `Seq.append` d)) s == repeati (nb - 1) (blake2_update1 a (size_block a) d) (blake2_update_block a false (size_block a) b s) ) #push-options "--z3rlimit 100" let repeati_update1 a b d nb s = let f = blake2_update1 a 0 (b `Seq.append` d) in let f' = blake2_update1 a (size_block a) d in let s' = blake2_update_block a false (size_block a) b s in Classical.forall_intro_2 (lemma_update1_shift a b d); assert (forall i s. f (i + 1) s == f' i s); Lems.repeati_right_shift (nb - 1) f' f s; assert (get_blocki a (b `Seq.append` d) 0 `Seq.equal` b); assert (s' == f 0 s) #pop-options val lemma_unfold_update_blocks: a:alg -> b:block_s a -> d:bytes{length d > 0 /\ length d + (size_block a) <= max_limb a} -> s:state a -> Lemma ( blake2_update_blocks a 0 (b `Seq.append` d) s == blake2_update_blocks a (size_block a) d (blake2_update_block a false (size_block a) b s) ) val split_one_more_block: a:alg -> b:block_s a -> d:bytes{length d > 0} -> Lemma ( let nb, rem = split a (length (b `Seq.append` d)) in let nb', rem' = split a (length d) in nb == nb' + 1 /\ rem == rem') let split_one_more_block a b d = () let lemma_unfold_update_blocks a b d s = let nb, rem = split a (length (b `Seq.append` d)) in let nb', rem' = split a (length d) in // The condition `length d > 0` is needed for this assertion, otherwise, // we would have rem = size_block a and rem' = 0 split_one_more_block a b d; repeati_update1 a b d nb s; let s_int = repeati nb (blake2_update1 a 0 (b `Seq.append` d)) s in lemma_shift_update_last a rem b d s_int
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Spec.Blake2.Alternative.fst" }
[ { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "Lems" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 1000, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> kk: Lib.IntTypes.size_nat{kk <= Spec.Blake2.Definitions.max_key a} -> k: Lib.ByteSequence.lbytes kk -> d: Lib.ByteSequence.bytes { (match kk = 0 with | true -> Lib.Sequence.length d <= Spec.Blake2.Definitions.max_limb a | _ -> Lib.Sequence.length d + Spec.Blake2.Definitions.size_block a <= Spec.Blake2.Definitions.max_limb a) <: Type0 } -> s: Spec.Blake2.Definitions.state a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Spec.Blake2.blake2_update a kk k d s) (Spec.Blake2.Alternative.blake2_update' a kk k d s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_key", "Lib.ByteSequence.lbytes", "Lib.ByteSequence.bytes", "Prims.op_Equality", "Prims.int", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.max_limb", "Prims.bool", "Prims.op_Addition", "Spec.Blake2.Definitions.size_block", "Spec.Blake2.Definitions.state", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Lib.IntTypes.int_t", "FStar.Seq.Base.append", "FStar.Seq.Base.empty", "Prims.nat", "FStar.Calc.calc_finish", "FStar.Seq.Base.seq", "Spec.Blake2.Definitions.row", "Spec.Blake2.blake2_update", "Spec.Blake2.Alternative.blake2_update'", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Spec.Blake2.blake2_update_blocks", "Lib.IntTypes.uint8", "Spec.Blake2.blake2_key_block", "Spec.Blake2.blake2_update_block", "Spec.Blake2.blake2_update_key", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Lib.LoopCombinators.eq_repeati0", "Spec.Blake2.blake2_update1", "FStar.Seq.Base.append_empty_r", "FStar.Seq.Base.lemma_empty", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "Prims.op_Multiply", "Spec.Blake2.split", "Spec.Blake2.Alternative.lemma_unfold_update_blocks", "Lib.Sequence.seq", "Prims.op_GreaterThan" ]
[]
false
false
true
false
false
let lemma_spec_equivalence_update a kk k d s =
let ll = length d in let key_block:bytes = if kk > 0 then blake2_key_block a kk k else Seq.empty in if kk = 0 then (assert (key_block `Seq.equal` Seq.empty); assert ((key_block `Seq.append` d) `Seq.equal` d); ()) else if ll = 0 then let nb, rem = split a (length (blake2_key_block a kk k)) in calc (Seq.equal) { blake2_update a kk k d s; (Seq.equal) { () } blake2_update_key a kk k ll s; (Seq.equal) { () } blake2_update_block a true (size_block a) (blake2_key_block a kk k) s; (Seq.equal) { Lib.LoopCombinators.eq_repeati0 nb (blake2_update1 a 0 (blake2_key_block a kk k)) s } blake2_update_blocks a 0 (blake2_key_block a kk k) s; (Seq.equal) { Seq.append_empty_r (blake2_key_block a kk k) } blake2_update_blocks a 0 ((blake2_key_block a kk k) `Seq.append` Seq.empty) s; (Seq.equal) { Seq.lemma_empty d } blake2_update_blocks a 0 ((blake2_key_block a kk k) `Seq.append` d) s; (Seq.equal) { () } blake2_update' a kk k d s; }; () else let nb, rem = split a (length ((blake2_key_block a kk k) `Seq.append` d)) in calc (Seq.equal) { blake2_update a kk k d s; (Seq.equal) { () } blake2_update_blocks a (size_block a) d (blake2_update_key a kk k ll s); (Seq.equal) { () } blake2_update_blocks a (size_block a) d (blake2_update_block a false (size_block a) (blake2_key_block a kk k) s); (Seq.equal) { lemma_unfold_update_blocks a (blake2_key_block a kk k) d s } blake2_update_blocks a 0 ((blake2_key_block a kk k) `Seq.append` d) s; }
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.insert_contains_fact
val insert_contains_fact : Prims.logical
let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 225, "start_col": 0, "start_line": 223 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.insert" ]
[]
false
false
false
true
true
let insert_contains_fact =
forall (a: eqtype) (s: set a) (x: a) (y: a). {:pattern insert x s; mem y s} mem y s ==> mem y (insert x s)
false
FStar.OrdSet.fsti
FStar.OrdSet.inv
val inv (#a: _) (c: condition a) : (z: condition a {forall x. c x = not (z x)})
val inv (#a: _) (c: condition a) : (z: condition a {forall x. c x = not (z x)})
let inv #a (c: condition a) : (z:condition a{forall x. c x = not (z x)}) = fun x -> not (c x)
{ "file_name": "ulib/experimental/FStar.OrdSet.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 93, "end_line": 205, "start_col": 0, "start_line": 205 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type total_order (a:eqtype) (f: (a -> a -> Tot bool)) = (forall a1 a2. (f a1 a2 /\ f a2 a1) ==> a1 = a2) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) type cmp (a:eqtype) = f:(a -> a -> Tot bool){total_order a f} let rec sorted (#a:eqtype) (f:cmp a) (l:list a) : Tot bool = match l with | [] -> true | x::[] -> true | x::y::tl -> f x y && x <> y && sorted f (y::tl) val ordset (a:eqtype) (f:cmp a) : Type0 val hasEq_ordset: a:eqtype -> f:cmp a -> Lemma (requires (True)) (ensures (hasEq (ordset a f))) [SMTPat (hasEq (ordset a f))] val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f) val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool (* currying-friendly version of mem, ready to be used as a lambda *) unfold let mem_of #a #f (s:ordset a f) x = mem x s val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s}) (* liat is the reverse of tail, i.e. a list of all but the last element. A shortcut to (fst (unsnoc s)), which as a word is composed in a remarkably similar fashion. *) val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then (l <> empty) && (head s = head l) else true) }) val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){ p = (liat s, last s) }) val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{ sorted f l /\ (forall x. (List.Tot.mem x l = mem x s)) }) val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f) (requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l)) val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a) val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f) val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool let superset #a #f (s1 s2: ordset a f) : Tot bool = subset s2 s1 val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f) val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f) val strict_subset: #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool let strict_superset #a #f (s1 s2: ordset a f) : Tot bool = strict_subset s2 s1 let disjoint #a #f (s1 s2 : ordset a f) : Tot bool = intersect s1 s2 = empty let equal (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Tot prop = forall x. mem #_ #f x s1 = mem #_ #f x s2 val eq_lemma: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> Lemma (requires (equal s1 s2)) (ensures (s1 = s2)) [SMTPat (equal s1 s2)] val mem_empty: #a:eqtype -> #f:cmp a -> x:a -> Lemma (requires True) (ensures (not (mem #a #f x (empty #a #f)))) [SMTPat (mem #a #f x (empty #a #f))] val mem_singleton: #a:eqtype -> #f:cmp a -> x:a -> y:a -> Lemma (requires True) (ensures (mem #a #f y (singleton #a #f x)) = (x = y)) [SMTPat (mem #a #f y (singleton #a #f x))] val mem_union: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> x:a -> Lemma (requires True) (ensures (mem #a #f x (union #a #f s1 s2) = (mem #a #f x s1 || mem #a #f x s2))) [SMTPat (mem #a #f x (union #a #f s1 s2))] val mem_intersect: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> x:a -> Lemma (requires True) (ensures (mem #a #f x (intersect s1 s2) = (mem #a #f x s1 && mem #a #f x s2))) [SMTPat (mem #a #f x (intersect #a #f s1 s2))] val mem_subset: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> Lemma (requires True) (ensures (subset #a #f s1 s2 <==> (forall x. mem #a #f x s1 ==> mem #a #f x s2))) [SMTPat (subset #a #f s1 s2)] val choose_empty: #a:eqtype -> #f:cmp a -> Lemma (requires True) (ensures (None? (choose #a #f (empty #a #f)))) [SMTPat (choose #a #f (empty #a #f))] (* TODO: FIXME: Pattern does not contain all quantified vars *) val choose_s: #a:eqtype -> #f:cmp a -> s:ordset a f -> Lemma (requires (not (s = (empty #a #f)))) (ensures (Some? (choose #a #f s) /\ s = union #a #f (singleton #a #f (Some?.v (choose #a #f s))) (remove #a #f (Some?.v (choose #a #f s)) s))) [SMTPat (choose #a #f s)] val mem_remove: #a:eqtype -> #f:cmp a -> x:a -> y:a -> s:ordset a f -> Lemma (requires True) (ensures (mem #a #f x (remove #a #f y s) = (mem #a #f x s && not (x = y)))) [SMTPat (mem #a #f x (remove #a #f y s))] val eq_remove: #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Lemma (requires (not (mem #a #f x s))) (ensures (s = remove #a #f x s)) [SMTPat (remove #a #f x s)] val size_empty: #a:eqtype -> #f:cmp a -> s:ordset a f -> Lemma (requires True) (ensures ((size #a #f s = 0) = (s = empty #a #f))) [SMTPat (size #a #f s)] val size_remove: #a:eqtype -> #f:cmp a -> y:a -> s:ordset a f -> Lemma (requires (mem #a #f y s)) (ensures (size #a #f s = size #a #f (remove #a #f y s) + 1)) [SMTPat (size #a #f (remove #a #f y s))] val size_singleton: #a:eqtype -> #f:cmp a -> x:a -> Lemma (requires True) (ensures (size #a #f (singleton #a #f x) = 1)) [SMTPat (size #a #f (singleton #a #f x))] val subset_size: #a:eqtype -> #f:cmp a -> x:ordset a f -> y:ordset a f -> Lemma (requires (subset #a #f x y)) (ensures (size #a #f x <= size #a #f y)) [SMTPat (subset #a #f x y)] (**********) val size_union: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> Lemma (requires True) (ensures ((size #a #f (union #a #f s1 s2) >= size #a #f s1) && (size #a #f (union #a #f s1 s2) >= size #a #f s2))) [SMTPat (size #a #f (union #a #f s1 s2))] (**********) val fold (#a:eqtype) (#acc:Type) (#f:cmp a) (g:acc -> a -> acc) (init:acc) (s:ordset a f) : Tot acc val map (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> (size sb <= size sa) /\ (as_list sb == FStar.List.Tot.map g (as_list sa)) /\ (let sa = as_list sa in let sb = as_list sb in Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa)))) val lemma_strict_subset_size (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Lemma (requires (strict_subset s1 s2)) (ensures (subset s1 s2 /\ size s1 < size s2)) [SMTPat (strict_subset s1 s2)] val lemma_minus_mem (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) (x:a) : Lemma (requires True) (ensures (mem x (minus s1 s2) = (mem x s1 && not (mem x s2)))) [SMTPat (mem x (minus s1 s2))] val lemma_strict_subset_exists_diff (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) type condition a = a -> bool
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.OrdSet.fsti" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.OrdSet.condition a -> z: FStar.OrdSet.condition a {forall (x: a). c x = Prims.op_Negation (z x)}
Prims.Tot
[ "total" ]
[]
[ "FStar.OrdSet.condition", "Prims.op_Negation", "Prims.bool", "Prims.l_Forall", "Prims.b2t", "Prims.op_Equality" ]
[]
false
false
false
false
false
let inv #a (c: condition a) : (z: condition a {forall x. c x = not (z x)}) =
fun x -> not (c x)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.union_contains_element_from_second_argument_fact
val union_contains_element_from_second_argument_fact : Prims.logical
let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 270, "start_col": 0, "start_line": 268 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.union" ]
[]
false
false
false
true
true
let union_contains_element_from_second_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a). {:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.union_contains_fact
val union_contains_fact : Prims.logical
let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 252, "start_col": 0, "start_line": 250 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_iff", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.union", "Prims.l_or" ]
[]
false
false
false
true
true
let union_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a). {:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.insert_nonmember_cardinality_fact
val insert_nonmember_cardinality_fact : Prims.logical
let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 243, "start_col": 0, "start_line": 241 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "Prims.op_Negation", "FStar.FiniteSet.Base.mem", "Prims.op_Equality", "Prims.int", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.insert", "Prims.op_Addition" ]
[]
false
false
false
true
true
let insert_nonmember_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a). {:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.union_of_disjoint_fact
val union_of_disjoint_fact : Prims.logical
let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 93, "end_line": 281, "start_col": 0, "start_line": 279 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "FStar.FiniteSet.Base.disjoint", "Prims.l_and", "Prims.eq2", "FStar.FiniteSet.Base.difference", "FStar.FiniteSet.Base.union" ]
[]
false
false
false
true
true
let union_of_disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.union_contains_element_from_first_argument_fact
val union_contains_element_from_first_argument_fact : Prims.logical
let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 261, "start_col": 0, "start_line": 259 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.union" ]
[]
false
false
false
true
true
let union_contains_element_from_first_argument_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a). {:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.intersection_contains_fact
val intersection_contains_fact : Prims.logical
let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 290, "start_col": 0, "start_line": 288 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_iff", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.intersection", "Prims.l_and" ]
[]
false
false
false
true
true
let intersection_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a). {:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.union_idempotent_right_fact
val union_idempotent_right_fact : Prims.logical
let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 299, "start_col": 0, "start_line": 297 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.eq2", "FStar.FiniteSet.Base.union" ]
[]
false
false
false
true
true
let union_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.intersection_idempotent_left_fact
val intersection_idempotent_left_fact : Prims.logical
let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 326, "start_col": 0, "start_line": 324 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.eq2", "FStar.FiniteSet.Base.intersection" ]
[]
false
false
false
true
true
let intersection_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.intersection_idempotent_right_fact
val intersection_idempotent_right_fact : Prims.logical
let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 317, "start_col": 0, "start_line": 315 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.eq2", "FStar.FiniteSet.Base.intersection" ]
[]
false
false
false
true
true
let intersection_idempotent_right_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.difference_contains_fact
val difference_contains_fact : Prims.logical
let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 344, "start_col": 0, "start_line": 342 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_iff", "Prims.b2t", "FStar.FiniteSet.Base.mem", "FStar.FiniteSet.Base.difference", "Prims.l_and", "Prims.op_Negation" ]
[]
false
false
false
true
true
let difference_contains_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (o: a). {:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.union_idempotent_left_fact
val union_idempotent_left_fact : Prims.logical
let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 308, "start_col": 0, "start_line": 306 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.eq2", "FStar.FiniteSet.Base.union" ]
[]
false
false
false
true
true
let union_idempotent_left_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.difference_doesnt_include_fact
val difference_doesnt_include_fact : Prims.logical
let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2))
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 353, "start_col": 0, "start_line": 351 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] );
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "FStar.FiniteSet.Base.mem", "Prims.op_Negation", "FStar.FiniteSet.Base.difference" ]
[]
false
false
false
true
true
let difference_doesnt_include_fact =
forall (a: eqtype) (s1: set a) (s2: set a) (y: a). {:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2))
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.intersection_cardinality_fact
val intersection_cardinality_fact : Prims.logical
let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 98, "end_line": 335, "start_col": 0, "start_line": 333 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.union", "FStar.FiniteSet.Base.intersection" ]
[]
false
false
false
true
true
let intersection_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.difference_cardinality_fact
val difference_cardinality_fact : Prims.logical
let difference_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 89, "end_line": 367, "start_col": 0, "start_line": 364 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] ); let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2)) /// We represent the following Dafny axiom with `difference_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: /// { Set#Card(Set#Difference(a, b)) } /// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) /// + Set#Card(Set#Intersection(a, b)) /// == Set#Card(Set#Union(a, b)) && /// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b)));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.difference", "FStar.FiniteSet.Base.intersection", "FStar.FiniteSet.Base.union", "Prims.op_Subtraction" ]
[]
false
false
false
true
true
let difference_cardinality_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.equal_extensionality_fact
val equal_extensionality_fact : Prims.logical
let equal_extensionality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 ==> s1 == s2
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 394, "start_col": 0, "start_line": 392 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] ); let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2)) /// We represent the following Dafny axiom with `difference_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: /// { Set#Card(Set#Difference(a, b)) } /// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) /// + Set#Card(Set#Intersection(a, b)) /// == Set#Card(Set#Union(a, b)) && /// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); let difference_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) /// We represent the following Dafny axiom with `subset_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) } /// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); let subset_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2} subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) /// We represent the following Dafny axiom with `equal_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } /// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o])); let equal_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) /// We represent the following Dafny axiom with `equal_extensionality_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets /// Set#Equal(a,b) ==> a == b);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "FStar.FiniteSet.Base.equal", "Prims.eq2" ]
[]
false
false
false
true
true
let equal_extensionality_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern equal s1 s2} equal s1 s2 ==> s1 == s2
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.insert_remove_fact
val insert_remove_fact : Prims.logical
let insert_remove_fact = forall (a: eqtype) (x: a) (s: set a).{:pattern insert x (remove x s)} mem x s = true ==> insert x (remove x s) == s
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 409, "start_col": 0, "start_line": 407 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] ); let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2)) /// We represent the following Dafny axiom with `difference_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: /// { Set#Card(Set#Difference(a, b)) } /// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) /// + Set#Card(Set#Intersection(a, b)) /// == Set#Card(Set#Union(a, b)) && /// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); let difference_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) /// We represent the following Dafny axiom with `subset_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) } /// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); let subset_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2} subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) /// We represent the following Dafny axiom with `equal_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } /// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o])); let equal_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) /// We represent the following Dafny axiom with `equal_extensionality_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets /// Set#Equal(a,b) ==> a == b); let equal_extensionality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 ==> s1 == s2 /// We represent the following Dafny axiom with `disjoint_fact`: /// /// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) } /// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o])); let disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2} disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) /// We add a few more facts for the utility function `remove` and for `set_as_list`:
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "FStar.FiniteSet.Base.mem", "Prims.eq2", "FStar.FiniteSet.Base.insert", "FStar.FiniteSet.Base.remove" ]
[]
false
false
false
true
true
let insert_remove_fact =
forall (a: eqtype) (x: a) (s: set a). {:pattern insert x (remove x s)} mem x s = true ==> insert x (remove x s) == s
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.equal_fact
val equal_fact : Prims.logical
let equal_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 86, "end_line": 385, "start_col": 0, "start_line": 383 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] ); let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2)) /// We represent the following Dafny axiom with `difference_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: /// { Set#Card(Set#Difference(a, b)) } /// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) /// + Set#Card(Set#Intersection(a, b)) /// == Set#Card(Set#Union(a, b)) && /// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); let difference_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) /// We represent the following Dafny axiom with `subset_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) } /// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); let subset_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2} subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) /// We represent the following Dafny axiom with `equal_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } /// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o]));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_iff", "FStar.FiniteSet.Base.equal", "Prims.b2t", "FStar.FiniteSet.Base.mem" ]
[]
false
false
false
true
true
let equal_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern equal s1 s2} equal s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 <==> mem o s2)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.subset_fact
val subset_fact : Prims.logical
let subset_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2} subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 86, "end_line": 376, "start_col": 0, "start_line": 374 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] ); let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2)) /// We represent the following Dafny axiom with `difference_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: /// { Set#Card(Set#Difference(a, b)) } /// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) /// + Set#Card(Set#Intersection(a, b)) /// == Set#Card(Set#Union(a, b)) && /// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); let difference_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) /// We represent the following Dafny axiom with `subset_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) } /// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o]));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_iff", "FStar.FiniteSet.Base.subset", "Prims.l_imp", "Prims.b2t", "FStar.FiniteSet.Base.mem" ]
[]
false
false
false
true
true
let subset_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern subset s1 s2} subset s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} mem o s1 ==> mem o s2)
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.insert_member_cardinality_fact
val insert_member_cardinality_fact : Prims.logical
let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 234, "start_col": 0, "start_line": 232 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "FStar.FiniteSet.Base.mem", "Prims.op_Equality", "Prims.nat", "FStar.FiniteSet.Base.cardinality", "FStar.FiniteSet.Base.insert" ]
[]
false
false
false
true
true
let insert_member_cardinality_fact =
forall (a: eqtype) (s: set a) (x: a). {:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.disjoint_fact
val disjoint_fact : Prims.logical
let disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2} disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 99, "end_line": 403, "start_col": 0, "start_line": 401 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] ); let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2)) /// We represent the following Dafny axiom with `difference_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: /// { Set#Card(Set#Difference(a, b)) } /// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) /// + Set#Card(Set#Intersection(a, b)) /// == Set#Card(Set#Union(a, b)) && /// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); let difference_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) /// We represent the following Dafny axiom with `subset_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) } /// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); let subset_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2} subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) /// We represent the following Dafny axiom with `equal_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } /// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o])); let equal_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) /// We represent the following Dafny axiom with `equal_extensionality_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets /// Set#Equal(a,b) ==> a == b); let equal_extensionality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 ==> s1 == s2 /// We represent the following Dafny axiom with `disjoint_fact`: /// /// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) } /// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o]));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_iff", "FStar.FiniteSet.Base.disjoint", "Prims.l_or", "Prims.b2t", "Prims.op_Negation", "FStar.FiniteSet.Base.mem" ]
[]
false
false
false
true
true
let disjoint_fact =
forall (a: eqtype) (s1: set a) (s2: set a). {:pattern disjoint s1 s2} disjoint s1 s2 <==> (forall o. {:pattern mem o s1\/mem o s2} not (mem o s1) \/ not (mem o s2))
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.remove_insert_fact
val remove_insert_fact : Prims.logical
let remove_insert_fact = forall (a: eqtype) (x: a) (s: set a).{:pattern remove x (insert x s)} mem x s = false ==> remove x (insert x s) == s
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 413, "start_col": 0, "start_line": 411 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] ); let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2)) /// We represent the following Dafny axiom with `difference_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: /// { Set#Card(Set#Difference(a, b)) } /// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) /// + Set#Card(Set#Intersection(a, b)) /// == Set#Card(Set#Union(a, b)) && /// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); let difference_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) /// We represent the following Dafny axiom with `subset_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) } /// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); let subset_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2} subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) /// We represent the following Dafny axiom with `equal_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } /// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o])); let equal_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) /// We represent the following Dafny axiom with `equal_extensionality_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets /// Set#Equal(a,b) ==> a == b); let equal_extensionality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 ==> s1 == s2 /// We represent the following Dafny axiom with `disjoint_fact`: /// /// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) } /// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o])); let disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2} disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) /// We add a few more facts for the utility function `remove` and for `set_as_list`: let insert_remove_fact = forall (a: eqtype) (x: a) (s: set a).{:pattern insert x (remove x s)} mem x s = true ==> insert x (remove x s) == s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "FStar.FiniteSet.Base.mem", "Prims.eq2", "FStar.FiniteSet.Base.remove", "FStar.FiniteSet.Base.insert" ]
[]
false
false
false
true
true
let remove_insert_fact =
forall (a: eqtype) (x: a) (s: set a). {:pattern remove x (insert x s)} mem x s = false ==> remove x (insert x s) == s
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.all_finite_set_facts
val all_finite_set_facts : Prims.logical
let all_finite_set_facts = empty_set_contains_no_elements_fact /\ length_zero_fact /\ singleton_contains_argument_fact /\ singleton_contains_fact /\ singleton_cardinality_fact /\ insert_fact /\ insert_contains_argument_fact /\ insert_contains_fact /\ insert_member_cardinality_fact /\ insert_nonmember_cardinality_fact /\ union_contains_fact /\ union_contains_element_from_first_argument_fact /\ union_contains_element_from_second_argument_fact /\ union_of_disjoint_fact /\ intersection_contains_fact /\ union_idempotent_right_fact /\ union_idempotent_left_fact /\ intersection_idempotent_right_fact /\ intersection_idempotent_left_fact /\ intersection_cardinality_fact /\ difference_contains_fact /\ difference_doesnt_include_fact /\ difference_cardinality_fact /\ subset_fact /\ equal_fact /\ equal_extensionality_fact /\ disjoint_fact /\ insert_remove_fact /\ remove_insert_fact /\ set_as_list_cardinality_fact
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 454, "start_col": 0, "start_line": 424 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] ); let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2)) /// We represent the following Dafny axiom with `difference_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: /// { Set#Card(Set#Difference(a, b)) } /// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) /// + Set#Card(Set#Intersection(a, b)) /// == Set#Card(Set#Union(a, b)) && /// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); let difference_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) /// We represent the following Dafny axiom with `subset_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) } /// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); let subset_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2} subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) /// We represent the following Dafny axiom with `equal_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } /// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o])); let equal_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) /// We represent the following Dafny axiom with `equal_extensionality_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets /// Set#Equal(a,b) ==> a == b); let equal_extensionality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 ==> s1 == s2 /// We represent the following Dafny axiom with `disjoint_fact`: /// /// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) } /// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o])); let disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2} disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) /// We add a few more facts for the utility function `remove` and for `set_as_list`: let insert_remove_fact = forall (a: eqtype) (x: a) (s: set a).{:pattern insert x (remove x s)} mem x s = true ==> insert x (remove x s) == s let remove_insert_fact = forall (a: eqtype) (x: a) (s: set a).{:pattern remove x (insert x s)} mem x s = false ==> remove x (insert x s) == s let set_as_list_cardinality_fact = forall (a: eqtype) (s: set a).{:pattern FLT.length (set_as_list s)} FLT.length (set_as_list s) = cardinality s (** The predicate `all_finite_set_facts` collects all the Dafny finite-set axioms. One can bring all these facts into scope with `all_finite_set_facts_lemma ()`. **)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_and", "FStar.FiniteSet.Base.empty_set_contains_no_elements_fact", "FStar.FiniteSet.Base.length_zero_fact", "FStar.FiniteSet.Base.singleton_contains_argument_fact", "FStar.FiniteSet.Base.singleton_contains_fact", "FStar.FiniteSet.Base.singleton_cardinality_fact", "FStar.FiniteSet.Base.insert_fact", "FStar.FiniteSet.Base.insert_contains_argument_fact", "FStar.FiniteSet.Base.insert_contains_fact", "FStar.FiniteSet.Base.insert_member_cardinality_fact", "FStar.FiniteSet.Base.insert_nonmember_cardinality_fact", "FStar.FiniteSet.Base.union_contains_fact", "FStar.FiniteSet.Base.union_contains_element_from_first_argument_fact", "FStar.FiniteSet.Base.union_contains_element_from_second_argument_fact", "FStar.FiniteSet.Base.union_of_disjoint_fact", "FStar.FiniteSet.Base.intersection_contains_fact", "FStar.FiniteSet.Base.union_idempotent_right_fact", "FStar.FiniteSet.Base.union_idempotent_left_fact", "FStar.FiniteSet.Base.intersection_idempotent_right_fact", "FStar.FiniteSet.Base.intersection_idempotent_left_fact", "FStar.FiniteSet.Base.intersection_cardinality_fact", "FStar.FiniteSet.Base.difference_contains_fact", "FStar.FiniteSet.Base.difference_doesnt_include_fact", "FStar.FiniteSet.Base.difference_cardinality_fact", "FStar.FiniteSet.Base.subset_fact", "FStar.FiniteSet.Base.equal_fact", "FStar.FiniteSet.Base.equal_extensionality_fact", "FStar.FiniteSet.Base.disjoint_fact", "FStar.FiniteSet.Base.insert_remove_fact", "FStar.FiniteSet.Base.remove_insert_fact", "FStar.FiniteSet.Base.set_as_list_cardinality_fact" ]
[]
false
false
false
true
true
let all_finite_set_facts =
empty_set_contains_no_elements_fact /\ length_zero_fact /\ singleton_contains_argument_fact /\ singleton_contains_fact /\ singleton_cardinality_fact /\ insert_fact /\ insert_contains_argument_fact /\ insert_contains_fact /\ insert_member_cardinality_fact /\ insert_nonmember_cardinality_fact /\ union_contains_fact /\ union_contains_element_from_first_argument_fact /\ union_contains_element_from_second_argument_fact /\ union_of_disjoint_fact /\ intersection_contains_fact /\ union_idempotent_right_fact /\ union_idempotent_left_fact /\ intersection_idempotent_right_fact /\ intersection_idempotent_left_fact /\ intersection_cardinality_fact /\ difference_contains_fact /\ difference_doesnt_include_fact /\ difference_cardinality_fact /\ subset_fact /\ equal_fact /\ equal_extensionality_fact /\ disjoint_fact /\ insert_remove_fact /\ remove_insert_fact /\ set_as_list_cardinality_fact
false
Hacl.Spec.P256.PrecompTable.fsti
Hacl.Spec.P256.PrecompTable.proj_point_to_list
val proj_point_to_list (p: S.proj_point) : point_list
val proj_point_to_list (p: S.proj_point) : point_list
let proj_point_to_list (p:S.proj_point) : point_list = [@inline_let] let (px, py, pz) = p in [@inline_let] let pxM = SM.to_mont px in [@inline_let] let pyM = SM.to_mont py in [@inline_let] let pzM = SM.to_mont pz in FL.(felem_to_list pxM @ felem_to_list pyM @ felem_to_list pzM)
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 39, "start_col": 0, "start_line": 34 }
module Hacl.Spec.P256.PrecompTable open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Impl.P256.Point module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery module FL = FStar.List.Tot #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3] inline_for_extraction noextract let felem_list = x:list uint64{FL.length x == 4} inline_for_extraction noextract let point_list = x:list uint64{FL.length x == 12} inline_for_extraction noextract let felem_to_list (x:S.felem) : felem_list = [@inline_let] let x0 = x % pow2 64 in [@inline_let] let x1 = x / pow2 64 % pow2 64 in [@inline_let] let x2 = x / pow2 128 % pow2 64 in [@inline_let] let x3 = x / pow2 192 % pow2 64 in [@inline_let] let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in assert_norm (FL.length r = 4); r
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.PrecompTable.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.P256.PointOps.proj_point -> Hacl.Spec.P256.PrecompTable.point_list
Prims.Tot
[ "total" ]
[]
[ "Spec.P256.PointOps.proj_point", "Prims.nat", "FStar.List.Tot.Base.op_At", "Lib.IntTypes.uint64", "Hacl.Spec.P256.PrecompTable.felem_to_list", "Spec.P256.PointOps.felem", "Hacl.Spec.P256.Montgomery.to_mont", "Hacl.Spec.P256.PrecompTable.point_list" ]
[]
false
false
false
true
false
let proj_point_to_list (p: S.proj_point) : point_list =
[@@ inline_let ]let px, py, pz = p in [@@ inline_let ]let pxM = SM.to_mont px in [@@ inline_let ]let pyM = SM.to_mont py in [@@ inline_let ]let pzM = SM.to_mont pz in let open FL in felem_to_list pxM @ felem_to_list pyM @ felem_to_list pzM
false
Hacl.Spec.P256.PrecompTable.fsti
Hacl.Spec.P256.PrecompTable.point_inv_list
val point_inv_list : p: Hacl.Spec.P256.PrecompTable.point_list -> Prims.logical
let point_inv_list (p:point_list) = let x = Seq.seq_of_list p <: lseq uint64 12 in point_inv_seq x
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 44, "start_col": 0, "start_line": 42 }
module Hacl.Spec.P256.PrecompTable open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Impl.P256.Point module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery module FL = FStar.List.Tot #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3] inline_for_extraction noextract let felem_list = x:list uint64{FL.length x == 4} inline_for_extraction noextract let point_list = x:list uint64{FL.length x == 12} inline_for_extraction noextract let felem_to_list (x:S.felem) : felem_list = [@inline_let] let x0 = x % pow2 64 in [@inline_let] let x1 = x / pow2 64 % pow2 64 in [@inline_let] let x2 = x / pow2 128 % pow2 64 in [@inline_let] let x3 = x / pow2 192 % pow2 64 in [@inline_let] let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in assert_norm (FL.length r = 4); r inline_for_extraction noextract let proj_point_to_list (p:S.proj_point) : point_list = [@inline_let] let (px, py, pz) = p in [@inline_let] let pxM = SM.to_mont px in [@inline_let] let pyM = SM.to_mont py in [@inline_let] let pzM = SM.to_mont pz in FL.(felem_to_list pxM @ felem_to_list pyM @ felem_to_list pzM)
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.PrecompTable.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Hacl.Spec.P256.PrecompTable.point_list -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.P256.PrecompTable.point_list", "Hacl.Impl.P256.Point.point_inv_seq", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Seq.Base.seq_of_list", "Lib.IntTypes.uint64", "Prims.logical" ]
[]
false
false
false
true
true
let point_inv_list (p: point_list) =
let x = Seq.seq_of_list p <: lseq uint64 12 in point_inv_seq x
false
Hacl.Spec.P256.PrecompTable.fsti
Hacl.Spec.P256.PrecompTable.felem_to_list
val felem_to_list (x: S.felem) : felem_list
val felem_to_list (x: S.felem) : felem_list
let felem_to_list (x:S.felem) : felem_list = [@inline_let] let x0 = x % pow2 64 in [@inline_let] let x1 = x / pow2 64 % pow2 64 in [@inline_let] let x2 = x / pow2 128 % pow2 64 in [@inline_let] let x3 = x / pow2 192 % pow2 64 in [@inline_let] let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in assert_norm (FL.length r = 4); r
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 31, "start_col": 0, "start_line": 24 }
module Hacl.Spec.P256.PrecompTable open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Impl.P256.Point module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery module FL = FStar.List.Tot #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3] inline_for_extraction noextract let felem_list = x:list uint64{FL.length x == 4} inline_for_extraction noextract let point_list = x:list uint64{FL.length x == 12}
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.PrecompTable.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Spec.P256.PointOps.felem -> Hacl.Spec.P256.PrecompTable.felem_list
Prims.Tot
[ "total" ]
[]
[ "Spec.P256.PointOps.felem", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "Lib.IntTypes.uint64", "Prims.list", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.P256.PrecompTable.create4", "Lib.IntTypes.u64", "Prims.op_Modulus", "Prims.op_Division", "Prims.pow2", "Hacl.Spec.P256.PrecompTable.felem_list" ]
[]
false
false
false
true
false
let felem_to_list (x: S.felem) : felem_list =
[@@ inline_let ]let x0 = x % pow2 64 in [@@ inline_let ]let x1 = x / pow2 64 % pow2 64 in [@@ inline_let ]let x2 = x / pow2 128 % pow2 64 in [@@ inline_let ]let x3 = x / pow2 192 % pow2 64 in [@@ inline_let ]let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in assert_norm (FL.length r = 4); r
false
FStar.FiniteSet.Base.fsti
FStar.FiniteSet.Base.set_as_list_cardinality_fact
val set_as_list_cardinality_fact : Prims.logical
let set_as_list_cardinality_fact = forall (a: eqtype) (s: set a).{:pattern FLT.length (set_as_list s)} FLT.length (set_as_list s) = cardinality s
{ "file_name": "ulib/FStar.FiniteSet.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 46, "end_line": 417, "start_col": 0, "start_line": 415 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite sets as they're modeled in Dafny. @summary Type and functions for modeling finite sets *) module FStar.FiniteSet.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot val set (a: eqtype) : Type0 (** We translate each Dafny sequence function prefixed with `Set#` into an F* function. **) /// We represent the Dafny operator [] on sets with `mem`: val mem (#a: eqtype) (x: a) (s: set a) : bool /// We can convert a set to a list with `set_as_list`: let rec list_nonrepeating (#a: eqtype) (xs: list a) : bool = match xs with | [] -> true | hd :: tl -> not (FLT.mem hd tl) && list_nonrepeating tl val set_as_list (#a: eqtype) (s: set a) : GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) /// We represent the Dafny function `Set#Card` with `cardinality`: /// /// function Set#Card<T>(Set T): int; val cardinality (#a: eqtype) (s: set a) : GTot nat /// We represent the Dafny function `Set#Empty` with `empty`: /// /// function Set#Empty<T>(): Set T; val emptyset (#a: eqtype) : set a /// We represent the Dafny function `Set#UnionOne` with `insert`: /// /// function Set#UnionOne<T>(Set T, T): Set T; val insert (#a: eqtype) (x: a) (s: set a) : set a /// We represent the Dafny function `Set#Singleton` with `singleton`: /// /// function Set#Singleton<T>(T): Set T; val singleton (#a: eqtype) (x: a) : set a /// We represent the Dafny function `Set#Union` with `union`: /// /// function Set#Union<T>(Set T, Set T): Set T; val union (#a: eqtype) (s1: set a) (s2: set a) : (set a) /// We represent the Dafny function `Set#Intersection` with `intersection`: /// /// function Set#Intersection<T>(Set T, Set T): Set T; val intersection (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Difference` with `difference`: /// /// function Set#Difference<T>(Set T, Set T): Set T; val difference (#a: eqtype) (s1: set a) (s2: set a) : set a /// We represent the Dafny function `Set#Subset` with `subset`: /// /// function Set#Subset<T>(Set T, Set T): bool; val subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Equal` with `equal`: /// /// function Set#Equal<T>(Set T, Set T): bool; val equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny function `Set#Disjoint` with `disjoint`: /// /// function Set#Disjoint<T>(Set T, Set T): bool; val disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (x: a) (s: set a) : set a = difference s (singleton x) let notin (#a: eqtype) (x: a) (s: set a) : bool = not (mem x s) (** We translate each finite set axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); /// We represent the following Dafny axiom with `empty_set_contains_no_elements_fact`: /// /// axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]); let empty_set_contains_no_elements_fact = forall (a: eqtype) (o: a).{:pattern mem o (emptyset)} not (mem o (emptyset #a)) /// We represent the following Dafny axiom with `length_zero_fact`: /// /// axiom (forall<T> s: Set T :: { Set#Card(s) } /// (Set#Card(s) == 0 <==> s == Set#Empty()) && /// (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); let length_zero_fact = forall (a: eqtype) (s: set a).{:pattern cardinality s} (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s)) /// We represent the following Dafny axiom with `singleton_contains_argument_fact`: /// /// axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); let singleton_contains_argument_fact = forall (a: eqtype) (r: a).{:pattern singleton r} mem r (singleton r) /// We represent the following Dafny axiom with `singleton_contains_fact`: /// /// axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); let singleton_contains_fact = forall (a: eqtype) (r: a) (o: a).{:pattern mem o (singleton r)} mem o (singleton r) <==> r == o /// We represent the following Dafny axiom with `singleton_cardinality_fact`: /// /// axiom (forall<T> r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); let singleton_cardinality_fact = forall (a: eqtype) (r: a).{:pattern cardinality (singleton r)} cardinality (singleton r) = 1 /// We represent the following Dafny axiom with `insert_fact`: /// /// axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] } /// Set#UnionOne(a,x)[o] <==> o == x || a[o]); let insert_fact = forall (a: eqtype) (s: set a) (x: a) (o: a).{:pattern mem o (insert x s)} mem o (insert x s) <==> o == x \/ mem o s /// We represent the following Dafny axiom with `insert_contains_argument_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) } /// Set#UnionOne(a, x)[x]); let insert_contains_argument_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern insert x s} mem x (insert x s) /// We represent the following Dafny axiom with `insert_contains_fact`: /// /// axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } /// a[y] ==> Set#UnionOne(a, x)[y]); let insert_contains_fact = forall (a: eqtype) (s: set a) (x: a) (y: a).{:pattern insert x s; mem y s} mem y s ==> mem y (insert x s) /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); let insert_member_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} mem x s ==> cardinality (insert x s) = cardinality s /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<T> a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } /// !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (s: set a) (x: a).{:pattern cardinality (insert x s)} not (mem x s) ==> cardinality (insert x s) = cardinality s + 1 /// We represent the following Dafny axiom with `union_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] } /// Set#Union(a,b)[o] <==> a[o] || b[o]); let union_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (union s1 s2)} mem o (union s1 s2) <==> mem o s1 \/ mem o s2 /// We represent the following Dafny axiom with `union_contains_element_from_first_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// a[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_first_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s1} mem y s1 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_contains_element_from_second_argument_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] } /// b[y] ==> Set#Union(a, b)[y]); let union_contains_element_from_second_argument_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern union s1 s2; mem y s2} mem y s2 ==> mem y (union s1 s2) /// We represent the following Dafny axiom with `union_of_disjoint_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, b) } /// Set#Disjoint(a, b) ==> /// Set#Difference(Set#Union(a, b), a) == b && /// Set#Difference(Set#Union(a, b), b) == a); let union_of_disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 s2} disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1 /// We represent the following Dafny axiom with `intersection_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] } /// Set#Intersection(a,b)[o] <==> a[o] && b[o]); let intersection_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (intersection s1 s2)} mem o (intersection s1 s2) <==> mem o s1 /\ mem o s2 /// We represent the following Dafny axiom with `union_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) } /// Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); let union_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union (union s1 s2) s2} union (union s1 s2) s2 == union s1 s2 /// We represent the following Dafny axiom with `union_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) } /// Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); let union_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern union s1 (union s1 s2)} union s1 (union s1 s2) == union s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_right_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } /// Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); let intersection_idempotent_right_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection (intersection s1 s2) s2} intersection (intersection s1 s2) s2 == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_idempotent_left_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } /// Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); let intersection_idempotent_left_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern intersection s1 (intersection s1 s2)} intersection s1 (intersection s1 s2) == intersection s1 s2 /// We represent the following Dafny axiom with `intersection_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: { Set#Card(Set#Union(a, b)) }{ Set#Card(Set#Intersection(a, b)) } /// Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); let intersection_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (intersection s1 s2)} cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2 /// We represent the following Dafny axiom with `difference_contains_fact`: /// /// axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] } /// Set#Difference(a,b)[o] <==> a[o] && !b[o]); let difference_contains_fact = forall (a: eqtype) (s1: set a) (s2: set a) (o: a).{:pattern mem o (difference s1 s2)} mem o (difference s1 s2) <==> mem o s1 /\ not (mem o s2) /// We represent the following Dafny axiom with `difference_doesnt_include_fact`: /// /// axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] } /// b[y] ==> !Set#Difference(a, b)[y] ); let difference_doesnt_include_fact = forall (a: eqtype) (s1: set a) (s2: set a) (y: a).{:pattern difference s1 s2; mem y s2} mem y s2 ==> not (mem y (difference s1 s2)) /// We represent the following Dafny axiom with `difference_cardinality_fact`: /// /// axiom (forall<T> a, b: Set T :: /// { Set#Card(Set#Difference(a, b)) } /// Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) /// + Set#Card(Set#Intersection(a, b)) /// == Set#Card(Set#Union(a, b)) && /// Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); let difference_cardinality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern cardinality (difference s1 s2)} cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2) /\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2) /// We represent the following Dafny axiom with `subset_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) } /// Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o])); let subset_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern subset s1 s2} subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) /// We represent the following Dafny axiom with `equal_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } /// Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o])); let equal_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) /// We represent the following Dafny axiom with `equal_extensionality_fact`: /// /// axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets /// Set#Equal(a,b) ==> a == b); let equal_extensionality_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern equal s1 s2} equal s1 s2 ==> s1 == s2 /// We represent the following Dafny axiom with `disjoint_fact`: /// /// axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) } /// Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o])); let disjoint_fact = forall (a: eqtype) (s1: set a) (s2: set a).{:pattern disjoint s1 s2} disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) /// We add a few more facts for the utility function `remove` and for `set_as_list`: let insert_remove_fact = forall (a: eqtype) (x: a) (s: set a).{:pattern insert x (remove x s)} mem x s = true ==> insert x (remove x s) == s let remove_insert_fact = forall (a: eqtype) (x: a) (s: set a).{:pattern remove x (insert x s)} mem x s = false ==> remove x (insert x s) == s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteSet.Base.fsti" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.FiniteSet.Base.set_as_list", "FStar.FiniteSet.Base.cardinality" ]
[]
false
false
false
true
true
let set_as_list_cardinality_fact =
forall (a: eqtype) (s: set a). {:pattern FLT.length (set_as_list s)} FLT.length (set_as_list s) = cardinality s
false
Hacl.Spec.P256.PrecompTable.fsti
Hacl.Spec.P256.PrecompTable.point_eval_list
val point_eval_list : p: Hacl.Spec.P256.PrecompTable.point_list -> Spec.P256.PointOps.proj_point
let point_eval_list (p:point_list) = let x = Seq.seq_of_list p <: lseq uint64 12 in from_mont_point (as_point_nat_seq x)
{ "file_name": "code/ecdsap256/Hacl.Spec.P256.PrecompTable.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 49, "start_col": 0, "start_line": 47 }
module Hacl.Spec.P256.PrecompTable open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Impl.P256.Point module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery module FL = FStar.List.Tot #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let create4 (x0 x1 x2 x3:uint64) : list uint64 = [x0; x1; x2; x3] inline_for_extraction noextract let felem_list = x:list uint64{FL.length x == 4} inline_for_extraction noextract let point_list = x:list uint64{FL.length x == 12} inline_for_extraction noextract let felem_to_list (x:S.felem) : felem_list = [@inline_let] let x0 = x % pow2 64 in [@inline_let] let x1 = x / pow2 64 % pow2 64 in [@inline_let] let x2 = x / pow2 128 % pow2 64 in [@inline_let] let x3 = x / pow2 192 % pow2 64 in [@inline_let] let r = create4 (u64 x0) (u64 x1) (u64 x2) (u64 x3) in assert_norm (FL.length r = 4); r inline_for_extraction noextract let proj_point_to_list (p:S.proj_point) : point_list = [@inline_let] let (px, py, pz) = p in [@inline_let] let pxM = SM.to_mont px in [@inline_let] let pyM = SM.to_mont py in [@inline_let] let pzM = SM.to_mont pz in FL.(felem_to_list pxM @ felem_to_list pyM @ felem_to_list pzM) inline_for_extraction noextract let point_inv_list (p:point_list) = let x = Seq.seq_of_list p <: lseq uint64 12 in point_inv_seq x
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.P256.PrecompTable.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Hacl.Spec.P256.PrecompTable.point_list -> Spec.P256.PointOps.proj_point
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.P256.PrecompTable.point_list", "Hacl.Impl.P256.Point.from_mont_point", "Hacl.Impl.P256.Point.as_point_nat_seq", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Seq.Base.seq_of_list", "Lib.IntTypes.uint64", "Spec.P256.PointOps.proj_point" ]
[]
false
false
false
true
false
let point_eval_list (p: point_list) =
let x = Seq.seq_of_list p <: lseq uint64 12 in from_mont_point (as_point_nat_seq x)
false
LowParse.TestLib.SLow.fst
LowParse.TestLib.SLow.test_string
val test_string (t: test_t) (testname inputstring: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true)
val test_string (t: test_t) (testname inputstring: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true)
let test_string (t:test_t) (testname:string) (inputstring:string): Stack unit (fun _ -> true) (fun _ _ _ -> true) = push_frame(); let input = bytes_of_hex inputstring in test_bytes t testname input; pop_frame()
{ "file_name": "src/lowparse/LowParse.TestLib.SLow.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 13, "end_line": 48, "start_col": 0, "start_line": 44 }
module LowParse.TestLib.SLow open FStar.HyperStack.ST open FStar.Bytes open FStar.HyperStack.IO open FStar.Printf module U32 = FStar.UInt32 #reset-options "--using_facts_from '* -LowParse'" #reset-options "--z3cliopt smt.arith.nl=false" (** The type of a unit test. It takes an input Bytes, parses it, and returns a newly formatted Bytes. Or it returns None if there is a fail to parse. *) type test_t = (input:FStar.Bytes.bytes) -> Stack (option (FStar.Bytes.bytes * U32.t)) (fun _ -> true) (fun _ _ _ -> true) assume val load_file: (filename:string) -> Tot FStar.Bytes.bytes (** Test one parser+formatter pair against an in-memory buffer of Bytes *) let test_bytes (t:test_t) (testname:string) (input:FStar.Bytes.bytes): Stack unit (fun _ -> true) (fun _ _ _ -> true) = push_frame(); print_string (sprintf "==== Testing Bytes %s ====\n" testname); let result = t input in (match result with | Some (formattedresult, offset) -> ( if U32.gt offset (len input) then ( print_string "Invalid length return - it is longer than the input buffer!" ) else ( let inputslice = FStar.Bytes.slice input 0ul offset in if formattedresult = inputslice then print_string "Formatted data matches original input data\n" else ( print_string "FAIL: formatted data does not match original input data\n" ) ) ) | _ -> print_string "Failed to parse\n" ); print_string (sprintf "==== Finished %s ====\n" testname); pop_frame()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.IO.fst.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.TestLib.SLow.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Printf", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Bytes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowParse.TestLib", "short_module": null }, { "abbrev": false, "full_module": "LowParse.TestLib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: LowParse.TestLib.SLow.test_t -> testname: Prims.string -> inputstring: Prims.string -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "LowParse.TestLib.SLow.test_t", "Prims.string", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "LowParse.TestLib.SLow.test_bytes", "FStar.Bytes.bytes", "FStar.Bytes.bytes_of_hex", "FStar.HyperStack.ST.push_frame", "FStar.Monotonic.HyperStack.mem", "Prims.b2t" ]
[]
false
true
false
false
false
let test_string (t: test_t) (testname inputstring: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame (); let input = bytes_of_hex inputstring in test_bytes t testname input; pop_frame ()
false
LowParse.TestLib.SLow.fst
LowParse.TestLib.SLow.test_file
val test_file (t: test_t) (filename: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true)
val test_file (t: test_t) (filename: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true)
let test_file (t:test_t) (filename:string): Stack unit (fun _ -> true) (fun _ _ _ -> true) = push_frame(); let input = load_file filename in test_bytes t filename input; pop_frame()
{ "file_name": "src/lowparse/LowParse.TestLib.SLow.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 13, "end_line": 55, "start_col": 0, "start_line": 51 }
module LowParse.TestLib.SLow open FStar.HyperStack.ST open FStar.Bytes open FStar.HyperStack.IO open FStar.Printf module U32 = FStar.UInt32 #reset-options "--using_facts_from '* -LowParse'" #reset-options "--z3cliopt smt.arith.nl=false" (** The type of a unit test. It takes an input Bytes, parses it, and returns a newly formatted Bytes. Or it returns None if there is a fail to parse. *) type test_t = (input:FStar.Bytes.bytes) -> Stack (option (FStar.Bytes.bytes * U32.t)) (fun _ -> true) (fun _ _ _ -> true) assume val load_file: (filename:string) -> Tot FStar.Bytes.bytes (** Test one parser+formatter pair against an in-memory buffer of Bytes *) let test_bytes (t:test_t) (testname:string) (input:FStar.Bytes.bytes): Stack unit (fun _ -> true) (fun _ _ _ -> true) = push_frame(); print_string (sprintf "==== Testing Bytes %s ====\n" testname); let result = t input in (match result with | Some (formattedresult, offset) -> ( if U32.gt offset (len input) then ( print_string "Invalid length return - it is longer than the input buffer!" ) else ( let inputslice = FStar.Bytes.slice input 0ul offset in if formattedresult = inputslice then print_string "Formatted data matches original input data\n" else ( print_string "FAIL: formatted data does not match original input data\n" ) ) ) | _ -> print_string "Failed to parse\n" ); print_string (sprintf "==== Finished %s ====\n" testname); pop_frame() (** Test one parser+formatter pair against a string of hex bytes, as Bytes *) let test_string (t:test_t) (testname:string) (inputstring:string): Stack unit (fun _ -> true) (fun _ _ _ -> true) = push_frame(); let input = bytes_of_hex inputstring in test_bytes t testname input; pop_frame()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.IO.fst.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.TestLib.SLow.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Printf", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Bytes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowParse.TestLib", "short_module": null }, { "abbrev": false, "full_module": "LowParse.TestLib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: LowParse.TestLib.SLow.test_t -> filename: Prims.string -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "LowParse.TestLib.SLow.test_t", "Prims.string", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "LowParse.TestLib.SLow.test_bytes", "FStar.Bytes.bytes", "LowParse.TestLib.SLow.load_file", "FStar.HyperStack.ST.push_frame", "FStar.Monotonic.HyperStack.mem", "Prims.b2t" ]
[]
false
true
false
false
false
let test_file (t: test_t) (filename: string) : Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame (); let input = load_file filename in test_bytes t filename input; pop_frame ()
false
LowParse.TestLib.SLow.fst
LowParse.TestLib.SLow.test_bytes
val test_bytes (t: test_t) (testname: string) (input: FStar.Bytes.bytes) : Stack unit (fun _ -> true) (fun _ _ _ -> true)
val test_bytes (t: test_t) (testname: string) (input: FStar.Bytes.bytes) : Stack unit (fun _ -> true) (fun _ _ _ -> true)
let test_bytes (t:test_t) (testname:string) (input:FStar.Bytes.bytes): Stack unit (fun _ -> true) (fun _ _ _ -> true) = push_frame(); print_string (sprintf "==== Testing Bytes %s ====\n" testname); let result = t input in (match result with | Some (formattedresult, offset) -> ( if U32.gt offset (len input) then ( print_string "Invalid length return - it is longer than the input buffer!" ) else ( let inputslice = FStar.Bytes.slice input 0ul offset in if formattedresult = inputslice then print_string "Formatted data matches original input data\n" else ( print_string "FAIL: formatted data does not match original input data\n" ) ) ) | _ -> print_string "Failed to parse\n" ); print_string (sprintf "==== Finished %s ====\n" testname); pop_frame()
{ "file_name": "src/lowparse/LowParse.TestLib.SLow.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 13, "end_line": 41, "start_col": 0, "start_line": 21 }
module LowParse.TestLib.SLow open FStar.HyperStack.ST open FStar.Bytes open FStar.HyperStack.IO open FStar.Printf module U32 = FStar.UInt32 #reset-options "--using_facts_from '* -LowParse'" #reset-options "--z3cliopt smt.arith.nl=false" (** The type of a unit test. It takes an input Bytes, parses it, and returns a newly formatted Bytes. Or it returns None if there is a fail to parse. *) type test_t = (input:FStar.Bytes.bytes) -> Stack (option (FStar.Bytes.bytes * U32.t)) (fun _ -> true) (fun _ _ _ -> true) assume val load_file: (filename:string) -> Tot FStar.Bytes.bytes
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.IO.fst.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.TestLib.SLow.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Printf", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Bytes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowParse.TestLib", "short_module": null }, { "abbrev": false, "full_module": "LowParse.TestLib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: LowParse.TestLib.SLow.test_t -> testname: Prims.string -> input: FStar.Bytes.bytes -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "LowParse.TestLib.SLow.test_t", "Prims.string", "FStar.Bytes.bytes", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "FStar.HyperStack.IO.print_string", "FStar.Printf.sprintf", "FStar.UInt32.t", "FStar.UInt32.gt", "FStar.Bytes.len", "Prims.bool", "Prims.op_Equality", "Prims.eq2", "FStar.Seq.Base.seq", "FStar.UInt8.t", "FStar.Bytes.reveal", "FStar.Seq.Base.slice", "FStar.UInt32.v", "FStar.UInt32.uint_to_t", "FStar.Bytes.slice", "FStar.UInt32.__uint_to_t", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "FStar.HyperStack.ST.push_frame", "FStar.Monotonic.HyperStack.mem", "Prims.b2t" ]
[]
false
true
false
false
false
let test_bytes (t: test_t) (testname: string) (input: FStar.Bytes.bytes) : Stack unit (fun _ -> true) (fun _ _ _ -> true) =
push_frame (); print_string (sprintf "==== Testing Bytes %s ====\n" testname); let result = t input in (match result with | Some (formattedresult, offset) -> (if U32.gt offset (len input) then (print_string "Invalid length return - it is longer than the input buffer!") else (let inputslice = FStar.Bytes.slice input 0ul offset in if formattedresult = inputslice then print_string "Formatted data matches original input data\n" else (print_string "FAIL: formatted data does not match original input data\n"))) | _ -> print_string "Failed to parse\n"); print_string (sprintf "==== Finished %s ====\n" testname); pop_frame ()
false
LowParse.Spec.Int.fsti
LowParse.Spec.Int.parse_u8_kind
val parse_u8_kind:parser_kind
val parse_u8_kind:parser_kind
let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1
{ "file_name": "src/lowparse/LowParse.Spec.Int.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 67, "end_line": 12, "start_col": 0, "start_line": 12 }
module LowParse.Spec.Int include LowParse.Spec.Base module Seq = FStar.Seq module E = FStar.Endianness module U8 = FStar.UInt8 module U16 = FStar.UInt16 module U32 = FStar.UInt32 module U64 = FStar.UInt64
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Int.fsti" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.total_constant_size_parser_kind" ]
[]
false
false
false
true
false
let parse_u8_kind:parser_kind =
total_constant_size_parser_kind 1
false
LowParse.Spec.Int.fsti
LowParse.Spec.Int.parse_u8
val parse_u8:parser parse_u8_kind U8.t
val parse_u8:parser parse_u8_kind U8.t
let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8
{ "file_name": "src/lowparse/LowParse.Spec.Int.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 54, "end_line": 16, "start_col": 0, "start_line": 16 }
module LowParse.Spec.Int include LowParse.Spec.Base module Seq = FStar.Seq module E = FStar.Endianness module U8 = FStar.UInt8 module U16 = FStar.UInt16 module U32 = FStar.UInt32 module U64 = FStar.UInt64 inline_for_extraction let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1 val tot_parse_u8: tot_parser parse_u8_kind U8.t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Int.fsti" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u8_kind FStar.UInt8.t
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Int.tot_parse_u8" ]
[]
false
false
false
true
false
let parse_u8:parser parse_u8_kind U8.t =
tot_parse_u8
false
LowParse.Spec.Int.fsti
LowParse.Spec.Int.parse_u32_kind
val parse_u32_kind:parser_kind
val parse_u32_kind:parser_kind
let parse_u32_kind : parser_kind = total_constant_size_parser_kind 4
{ "file_name": "src/lowparse/LowParse.Spec.Int.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 35, "end_line": 76, "start_col": 0, "start_line": 75 }
module LowParse.Spec.Int include LowParse.Spec.Base module Seq = FStar.Seq module E = FStar.Endianness module U8 = FStar.UInt8 module U16 = FStar.UInt16 module U32 = FStar.UInt32 module U64 = FStar.UInt64 inline_for_extraction let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1 val tot_parse_u8: tot_parser parse_u8_kind U8.t let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8 val parse_u8_spec (b: bytes) : Lemma (requires (Seq.length b >= 1)) (ensures ( let pp = parse parse_u8 b in Some? pp /\ ( let (Some (v, consumed)) = pp in U8.v v == E.be_to_n (Seq.slice b 0 1) ))) val parse_u8_spec' (b: bytes) : Lemma (requires (Seq.length b >= 1)) (ensures ( let pp = parse parse_u8 b in Some? pp /\ ( let (Some (v, consumed)) = pp in v == Seq.index b 0 ))) val serialize_u8 : serializer parse_u8 val serialize_u8_spec (x: U8.t) : Lemma (serialize serialize_u8 x `Seq.equal` Seq.create 1 x) let serialize_u8_spec' (x: U8.t) : Lemma (let s = serialize serialize_u8 x in Seq.length s == 1 /\ Seq.index s 0 == x) = serialize_u8_spec x inline_for_extraction let parse_u16_kind : parser_kind = total_constant_size_parser_kind 2 val parse_u16: parser parse_u16_kind U16.t val parse_u16_spec (b: bytes) : Lemma (requires (Seq.length b >= 2)) (ensures ( let pp = parse parse_u16 b in Some? pp /\ ( let (Some (v, consumed)) = pp in U16.v v == E.be_to_n (Seq.slice b 0 2) ))) val serialize_u16 : serializer parse_u16
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Int.fsti" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.total_constant_size_parser_kind" ]
[]
false
false
false
true
false
let parse_u32_kind:parser_kind =
total_constant_size_parser_kind 4
false
LowParse.Spec.Int.fsti
LowParse.Spec.Int.parse_u16_kind
val parse_u16_kind:parser_kind
val parse_u16_kind:parser_kind
let parse_u16_kind : parser_kind = total_constant_size_parser_kind 2
{ "file_name": "src/lowparse/LowParse.Spec.Int.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 35, "end_line": 57, "start_col": 0, "start_line": 56 }
module LowParse.Spec.Int include LowParse.Spec.Base module Seq = FStar.Seq module E = FStar.Endianness module U8 = FStar.UInt8 module U16 = FStar.UInt16 module U32 = FStar.UInt32 module U64 = FStar.UInt64 inline_for_extraction let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1 val tot_parse_u8: tot_parser parse_u8_kind U8.t let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8 val parse_u8_spec (b: bytes) : Lemma (requires (Seq.length b >= 1)) (ensures ( let pp = parse parse_u8 b in Some? pp /\ ( let (Some (v, consumed)) = pp in U8.v v == E.be_to_n (Seq.slice b 0 1) ))) val parse_u8_spec' (b: bytes) : Lemma (requires (Seq.length b >= 1)) (ensures ( let pp = parse parse_u8 b in Some? pp /\ ( let (Some (v, consumed)) = pp in v == Seq.index b 0 ))) val serialize_u8 : serializer parse_u8 val serialize_u8_spec (x: U8.t) : Lemma (serialize serialize_u8 x `Seq.equal` Seq.create 1 x) let serialize_u8_spec' (x: U8.t) : Lemma (let s = serialize serialize_u8 x in Seq.length s == 1 /\ Seq.index s 0 == x) = serialize_u8_spec x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Int.fsti" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.total_constant_size_parser_kind" ]
[]
false
false
false
true
false
let parse_u16_kind:parser_kind =
total_constant_size_parser_kind 2
false
LowParse.Spec.Int.fsti
LowParse.Spec.Int.parse_u64_kind
val parse_u64_kind:parser_kind
val parse_u64_kind:parser_kind
let parse_u64_kind : parser_kind = total_constant_size_parser_kind 8
{ "file_name": "src/lowparse/LowParse.Spec.Int.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 35, "end_line": 95, "start_col": 0, "start_line": 94 }
module LowParse.Spec.Int include LowParse.Spec.Base module Seq = FStar.Seq module E = FStar.Endianness module U8 = FStar.UInt8 module U16 = FStar.UInt16 module U32 = FStar.UInt32 module U64 = FStar.UInt64 inline_for_extraction let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1 val tot_parse_u8: tot_parser parse_u8_kind U8.t let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8 val parse_u8_spec (b: bytes) : Lemma (requires (Seq.length b >= 1)) (ensures ( let pp = parse parse_u8 b in Some? pp /\ ( let (Some (v, consumed)) = pp in U8.v v == E.be_to_n (Seq.slice b 0 1) ))) val parse_u8_spec' (b: bytes) : Lemma (requires (Seq.length b >= 1)) (ensures ( let pp = parse parse_u8 b in Some? pp /\ ( let (Some (v, consumed)) = pp in v == Seq.index b 0 ))) val serialize_u8 : serializer parse_u8 val serialize_u8_spec (x: U8.t) : Lemma (serialize serialize_u8 x `Seq.equal` Seq.create 1 x) let serialize_u8_spec' (x: U8.t) : Lemma (let s = serialize serialize_u8 x in Seq.length s == 1 /\ Seq.index s 0 == x) = serialize_u8_spec x inline_for_extraction let parse_u16_kind : parser_kind = total_constant_size_parser_kind 2 val parse_u16: parser parse_u16_kind U16.t val parse_u16_spec (b: bytes) : Lemma (requires (Seq.length b >= 2)) (ensures ( let pp = parse parse_u16 b in Some? pp /\ ( let (Some (v, consumed)) = pp in U16.v v == E.be_to_n (Seq.slice b 0 2) ))) val serialize_u16 : serializer parse_u16 inline_for_extraction let parse_u32_kind : parser_kind = total_constant_size_parser_kind 4 val parse_u32: parser parse_u32_kind U32.t val parse_u32_spec (b: bytes) : Lemma (requires (Seq.length b >= 4)) (ensures ( let pp = parse parse_u32 b in Some? pp /\ ( let (Some (v, consumed)) = pp in U32.v v == E.be_to_n (Seq.slice b 0 4) ))) val serialize_u32 : serializer parse_u32
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Int.fsti" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.total_constant_size_parser_kind" ]
[]
false
false
false
true
false
let parse_u64_kind:parser_kind =
total_constant_size_parser_kind 8
false
LowParse.Spec.Int.fsti
LowParse.Spec.Int.serialize_u8_spec'
val serialize_u8_spec' (x: U8.t) : Lemma (let s = serialize serialize_u8 x in Seq.length s == 1 /\ Seq.index s 0 == x)
val serialize_u8_spec' (x: U8.t) : Lemma (let s = serialize serialize_u8 x in Seq.length s == 1 /\ Seq.index s 0 == x)
let serialize_u8_spec' (x: U8.t) : Lemma (let s = serialize serialize_u8 x in Seq.length s == 1 /\ Seq.index s 0 == x) = serialize_u8_spec x
{ "file_name": "src/lowparse/LowParse.Spec.Int.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 21, "end_line": 53, "start_col": 0, "start_line": 47 }
module LowParse.Spec.Int include LowParse.Spec.Base module Seq = FStar.Seq module E = FStar.Endianness module U8 = FStar.UInt8 module U16 = FStar.UInt16 module U32 = FStar.UInt32 module U64 = FStar.UInt64 inline_for_extraction let parse_u8_kind : parser_kind = total_constant_size_parser_kind 1 val tot_parse_u8: tot_parser parse_u8_kind U8.t let parse_u8: parser parse_u8_kind U8.t = tot_parse_u8 val parse_u8_spec (b: bytes) : Lemma (requires (Seq.length b >= 1)) (ensures ( let pp = parse parse_u8 b in Some? pp /\ ( let (Some (v, consumed)) = pp in U8.v v == E.be_to_n (Seq.slice b 0 1) ))) val parse_u8_spec' (b: bytes) : Lemma (requires (Seq.length b >= 1)) (ensures ( let pp = parse parse_u8 b in Some? pp /\ ( let (Some (v, consumed)) = pp in v == Seq.index b 0 ))) val serialize_u8 : serializer parse_u8 val serialize_u8_spec (x: U8.t) : Lemma (serialize serialize_u8 x `Seq.equal` Seq.create 1 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Base.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Int.fsti" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "E" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> FStar.Pervasives.Lemma (ensures (let s = LowParse.Spec.Base.serialize LowParse.Spec.Int.serialize_u8 x in FStar.Seq.Base.length s == 1 /\ FStar.Seq.Base.index s 0 == x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt8.t", "LowParse.Spec.Int.serialize_u8_spec", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "LowParse.Bytes.byte", "FStar.Seq.Base.index", "LowParse.Bytes.bytes", "LowParse.Spec.Base.serialize", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.Int.serialize_u8", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let serialize_u8_spec' (x: U8.t) : Lemma (let s = serialize serialize_u8 x in Seq.length s == 1 /\ Seq.index s 0 == x) =
serialize_u8_spec x
false
Pulse.Checker.Exists.fst
Pulse.Checker.Exists.terms_to_string
val terms_to_string (t: list term) : T.Tac string
val terms_to_string (t: list term) : T.Tac string
let terms_to_string (t:list term) : T.Tac string = String.concat "\n" (T.map Pulse.Syntax.Printer.term_to_string t)
{ "file_name": "lib/steel/pulse/Pulse.Checker.Exists.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 68, "end_line": 41, "start_col": 0, "start_line": 39 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Exists open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Checker.Pure open Pulse.Checker.Base open Pulse.Checker.Prover module T = FStar.Tactics.V2 module P = Pulse.Syntax.Printer module FV = Pulse.Typing.FV module Metatheory = Pulse.Typing.Metatheory let vprop_as_list_typing (#g:env) (#p:term) (t:tot_typing g p tm_vprop) (x:term { List.Tot.memP x (vprop_as_list p) }) : tot_typing g x tm_vprop = assume false; t
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.FV.fsti.checked", "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.String.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Exists.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Typing.FV", "short_module": "FV" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Prims.list Pulse.Syntax.Base.term -> FStar.Tactics.Effect.Tac Prims.string
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.list", "Pulse.Syntax.Base.term", "FStar.String.concat", "Prims.string", "FStar.Tactics.Util.map", "Pulse.Syntax.Printer.term_to_string" ]
[]
false
true
false
false
false
let terms_to_string (t: list term) : T.Tac string =
String.concat "\n" (T.map Pulse.Syntax.Printer.term_to_string t)
false
Hacl.EC.Ed25519.fst
Hacl.EC.Ed25519.mk_felem_zero
val mk_felem_zero: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero)
val mk_felem_zero: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero)
let mk_felem_zero b = Hacl.Bignum25519.make_zero b
{ "file_name": "code/ed25519/Hacl.EC.Ed25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 37, "start_col": 0, "start_line": 36 }
module Hacl.EC.Ed25519 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module F51 = Hacl.Impl.Ed25519.Field51 module SE = Spec.Ed25519 module SC = Spec.Curve25519 module ML = Hacl.Impl.Ed25519.Ladder #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/******************************************************************************* Verified field arithmetic modulo p = 2^255 - 19. This is a 64-bit optimized version, where a field element in radix-2^{51} is represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5]. *******************************************************************************/\n"; Comment "Write the additive identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_zero: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDouble.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.PointAdd.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.EC.Ed25519.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "ML" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Impl.Ed25519.Field51.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Ed25519.Field51.felem", "Hacl.Bignum25519.make_zero", "Prims.unit" ]
[]
false
true
false
false
false
let mk_felem_zero b =
Hacl.Bignum25519.make_zero b
false
Hacl.EC.Ed25519.fst
Hacl.EC.Ed25519.mk_point_at_inf
val mk_point_at_inf: p:F51.point -> Stack unit (requires fun h -> live h p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\ SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
val mk_point_at_inf: p:F51.point -> Stack unit (requires fun h -> live h p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\ SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
let mk_point_at_inf p = Hacl.Impl.Ed25519.PointConstants.make_point_inf p
{ "file_name": "code/ed25519/Hacl.EC.Ed25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 236, "start_col": 0, "start_line": 235 }
module Hacl.EC.Ed25519 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module F51 = Hacl.Impl.Ed25519.Field51 module SE = Spec.Ed25519 module SC = Spec.Curve25519 module ML = Hacl.Impl.Ed25519.Ladder #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/******************************************************************************* Verified field arithmetic modulo p = 2^255 - 19. This is a 64-bit optimized version, where a field element in radix-2^{51} is represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5]. *******************************************************************************/\n"; Comment "Write the additive identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_zero: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero) let mk_felem_zero b = Hacl.Bignum25519.make_zero b [@@ Comment "Write the multiplicative identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_one: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one) let mk_felem_one b = Hacl.Bignum25519.make_one b [@@ Comment "Write `a + b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_add a b out = Hacl.Impl.Curve25519.Field51.fadd out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a - b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_sub a b out = Hacl.Impl.Curve25519.Field51.fsub out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a * b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_mul a b out = push_frame(); let tmp = create 10ul (u128 0) in Hacl.Impl.Curve25519.Field51.fmul out a b tmp; pop_frame() [@@ Comment "Write `a * a mod p` in `out`. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are either disjoint or equal"] val felem_sqr: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a)) let felem_sqr a out = push_frame(); let tmp = create 5ul (u128 0) in Hacl.Impl.Curve25519.Field51.fsqr out a tmp; pop_frame() [@@ Comment "Write `a ^ (p - 2) mod p` in `out`. The function computes modular multiplicative inverse if `a` <> zero. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are disjoint"] val felem_inv: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ disjoint a out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2)) let felem_inv a out = Hacl.Bignum25519.inverse out a; Hacl.Bignum25519.reduce_513 out [@@ Comment "Load a little-endian field element from memory. The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32]. The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `b` and `out` are disjoint NOTE that the function also performs the reduction modulo 2^255."] val felem_load: b:lbuffer uint8 32ul -> out:F51.felem -> Stack unit (requires fun h -> live h b /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255) let felem_load b out = Hacl.Bignum25519.load_51 out b [@@ Comment "Serialize a field element into little-endian memory. The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5]. The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are disjoint"] val felem_store: a:F51.felem -> out:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a)) let felem_store a out = Hacl.Bignum25519.store_51 out a [@@ CPrologue "/******************************************************************************* Verified group operations for the edwards25519 elliptic curve of the form −x^2 + y^2 = 1 − (121665/121666) * x^2 * y^2. This is a 64-bit optimized version, where a group element in extended homogeneous coordinates (X, Y, Z, T) is represented as an array of 20 unsigned 64-bit integers, i.e., uint64_t[20]. *******************************************************************************/\n"; Comment "Write the point at infinity (additive identity) in `p`. The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."] val mk_point_at_inf: p:F51.point -> Stack unit (requires fun h -> live h p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\ SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDouble.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.PointAdd.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.EC.Ed25519.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "ML" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Hacl.Impl.Ed25519.Field51.point -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Ed25519.Field51.point", "Hacl.Impl.Ed25519.PointConstants.make_point_inf", "Prims.unit" ]
[]
false
true
false
false
false
let mk_point_at_inf p =
Hacl.Impl.Ed25519.PointConstants.make_point_inf p
false
Hacl.EC.Ed25519.fst
Hacl.EC.Ed25519.mk_felem_one
val mk_felem_one: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one)
val mk_felem_one: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one)
let mk_felem_one b = Hacl.Bignum25519.make_one b
{ "file_name": "code/ed25519/Hacl.EC.Ed25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 51, "start_col": 0, "start_line": 50 }
module Hacl.EC.Ed25519 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module F51 = Hacl.Impl.Ed25519.Field51 module SE = Spec.Ed25519 module SC = Spec.Curve25519 module ML = Hacl.Impl.Ed25519.Ladder #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/******************************************************************************* Verified field arithmetic modulo p = 2^255 - 19. This is a 64-bit optimized version, where a field element in radix-2^{51} is represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5]. *******************************************************************************/\n"; Comment "Write the additive identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_zero: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero) let mk_felem_zero b = Hacl.Bignum25519.make_zero b [@@ Comment "Write the multiplicative identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_one: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDouble.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.PointAdd.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.EC.Ed25519.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "ML" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Impl.Ed25519.Field51.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Ed25519.Field51.felem", "Hacl.Bignum25519.make_one", "Prims.unit" ]
[]
false
true
false
false
false
let mk_felem_one b =
Hacl.Bignum25519.make_one b
false
Hacl.EC.Ed25519.fst
Hacl.EC.Ed25519.mk_base_point
val mk_base_point: p:F51.point -> Stack unit (requires fun h -> live h p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\ SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g)
val mk_base_point: p:F51.point -> Stack unit (requires fun h -> live h p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\ SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g)
let mk_base_point p = Spec.Ed25519.Lemmas.g_is_on_curve (); Hacl.Impl.Ed25519.PointConstants.make_g p
{ "file_name": "code/ed25519/Hacl.EC.Ed25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 251, "start_col": 0, "start_line": 249 }
module Hacl.EC.Ed25519 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module F51 = Hacl.Impl.Ed25519.Field51 module SE = Spec.Ed25519 module SC = Spec.Curve25519 module ML = Hacl.Impl.Ed25519.Ladder #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/******************************************************************************* Verified field arithmetic modulo p = 2^255 - 19. This is a 64-bit optimized version, where a field element in radix-2^{51} is represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5]. *******************************************************************************/\n"; Comment "Write the additive identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_zero: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero) let mk_felem_zero b = Hacl.Bignum25519.make_zero b [@@ Comment "Write the multiplicative identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_one: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one) let mk_felem_one b = Hacl.Bignum25519.make_one b [@@ Comment "Write `a + b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_add a b out = Hacl.Impl.Curve25519.Field51.fadd out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a - b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_sub a b out = Hacl.Impl.Curve25519.Field51.fsub out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a * b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_mul a b out = push_frame(); let tmp = create 10ul (u128 0) in Hacl.Impl.Curve25519.Field51.fmul out a b tmp; pop_frame() [@@ Comment "Write `a * a mod p` in `out`. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are either disjoint or equal"] val felem_sqr: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a)) let felem_sqr a out = push_frame(); let tmp = create 5ul (u128 0) in Hacl.Impl.Curve25519.Field51.fsqr out a tmp; pop_frame() [@@ Comment "Write `a ^ (p - 2) mod p` in `out`. The function computes modular multiplicative inverse if `a` <> zero. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are disjoint"] val felem_inv: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ disjoint a out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2)) let felem_inv a out = Hacl.Bignum25519.inverse out a; Hacl.Bignum25519.reduce_513 out [@@ Comment "Load a little-endian field element from memory. The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32]. The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `b` and `out` are disjoint NOTE that the function also performs the reduction modulo 2^255."] val felem_load: b:lbuffer uint8 32ul -> out:F51.felem -> Stack unit (requires fun h -> live h b /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255) let felem_load b out = Hacl.Bignum25519.load_51 out b [@@ Comment "Serialize a field element into little-endian memory. The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5]. The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are disjoint"] val felem_store: a:F51.felem -> out:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a)) let felem_store a out = Hacl.Bignum25519.store_51 out a [@@ CPrologue "/******************************************************************************* Verified group operations for the edwards25519 elliptic curve of the form −x^2 + y^2 = 1 − (121665/121666) * x^2 * y^2. This is a 64-bit optimized version, where a group element in extended homogeneous coordinates (X, Y, Z, T) is represented as an array of 20 unsigned 64-bit integers, i.e., uint64_t[20]. *******************************************************************************/\n"; Comment "Write the point at infinity (additive identity) in `p`. The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."] val mk_point_at_inf: p:F51.point -> Stack unit (requires fun h -> live h p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\ SE.to_aff_point (F51.point_eval h1 p) == SE.aff_point_at_infinity) let mk_point_at_inf p = Hacl.Impl.Ed25519.PointConstants.make_point_inf p [@@ Comment "Write the base point (generator) in `p`. The outparam `p` is meant to be 20 limbs in size, i.e., uint64_t[20]."] val mk_base_point: p:F51.point -> Stack unit (requires fun h -> live h p) (ensures fun h0 _ h1 -> modifies (loc p) h0 h1 /\ F51.point_inv_t h1 p /\ F51.inv_ext_point (as_seq h1 p) /\ SE.to_aff_point (F51.point_eval h1 p) == SE.aff_g)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDouble.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.PointAdd.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.EC.Ed25519.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "ML" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Hacl.Impl.Ed25519.Field51.point -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Ed25519.Field51.point", "Hacl.Impl.Ed25519.PointConstants.make_g", "Prims.unit", "Spec.Ed25519.Lemmas.g_is_on_curve" ]
[]
false
true
false
false
false
let mk_base_point p =
Spec.Ed25519.Lemmas.g_is_on_curve (); Hacl.Impl.Ed25519.PointConstants.make_g p
false
Hacl.EC.Ed25519.fst
Hacl.EC.Ed25519.felem_load
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem -> Stack unit (requires fun h -> live h b /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
val felem_load: b:lbuffer uint8 32ul -> out:F51.felem -> Stack unit (requires fun h -> live h b /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
let felem_load b out = Hacl.Bignum25519.load_51 out b
{ "file_name": "code/ed25519/Hacl.EC.Ed25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 192, "start_col": 0, "start_line": 191 }
module Hacl.EC.Ed25519 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module F51 = Hacl.Impl.Ed25519.Field51 module SE = Spec.Ed25519 module SC = Spec.Curve25519 module ML = Hacl.Impl.Ed25519.Ladder #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/******************************************************************************* Verified field arithmetic modulo p = 2^255 - 19. This is a 64-bit optimized version, where a field element in radix-2^{51} is represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5]. *******************************************************************************/\n"; Comment "Write the additive identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_zero: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero) let mk_felem_zero b = Hacl.Bignum25519.make_zero b [@@ Comment "Write the multiplicative identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_one: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one) let mk_felem_one b = Hacl.Bignum25519.make_one b [@@ Comment "Write `a + b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_add a b out = Hacl.Impl.Curve25519.Field51.fadd out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a - b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_sub a b out = Hacl.Impl.Curve25519.Field51.fsub out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a * b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_mul a b out = push_frame(); let tmp = create 10ul (u128 0) in Hacl.Impl.Curve25519.Field51.fmul out a b tmp; pop_frame() [@@ Comment "Write `a * a mod p` in `out`. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are either disjoint or equal"] val felem_sqr: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a)) let felem_sqr a out = push_frame(); let tmp = create 5ul (u128 0) in Hacl.Impl.Curve25519.Field51.fsqr out a tmp; pop_frame() [@@ Comment "Write `a ^ (p - 2) mod p` in `out`. The function computes modular multiplicative inverse if `a` <> zero. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are disjoint"] val felem_inv: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ disjoint a out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2)) let felem_inv a out = Hacl.Bignum25519.inverse out a; Hacl.Bignum25519.reduce_513 out [@@ Comment "Load a little-endian field element from memory. The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32]. The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `b` and `out` are disjoint NOTE that the function also performs the reduction modulo 2^255."] val felem_load: b:lbuffer uint8 32ul -> out:F51.felem -> Stack unit (requires fun h -> live h b /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDouble.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.PointAdd.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.EC.Ed25519.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "ML" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> out: Hacl.Impl.Ed25519.Field51.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Ed25519.Field51.felem", "Hacl.Bignum25519.load_51", "Prims.unit" ]
[]
false
true
false
false
false
let felem_load b out =
Hacl.Bignum25519.load_51 out b
false
Hacl.EC.Ed25519.fst
Hacl.EC.Ed25519.felem_store
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
val felem_store: a:F51.felem -> out:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
let felem_store a out = Hacl.Bignum25519.store_51 out a
{ "file_name": "code/ed25519/Hacl.EC.Ed25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 212, "start_col": 0, "start_line": 211 }
module Hacl.EC.Ed25519 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module F51 = Hacl.Impl.Ed25519.Field51 module SE = Spec.Ed25519 module SC = Spec.Curve25519 module ML = Hacl.Impl.Ed25519.Ladder #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/******************************************************************************* Verified field arithmetic modulo p = 2^255 - 19. This is a 64-bit optimized version, where a field element in radix-2^{51} is represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5]. *******************************************************************************/\n"; Comment "Write the additive identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_zero: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero) let mk_felem_zero b = Hacl.Bignum25519.make_zero b [@@ Comment "Write the multiplicative identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_one: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one) let mk_felem_one b = Hacl.Bignum25519.make_one b [@@ Comment "Write `a + b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_add a b out = Hacl.Impl.Curve25519.Field51.fadd out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a - b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_sub a b out = Hacl.Impl.Curve25519.Field51.fsub out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a * b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_mul a b out = push_frame(); let tmp = create 10ul (u128 0) in Hacl.Impl.Curve25519.Field51.fmul out a b tmp; pop_frame() [@@ Comment "Write `a * a mod p` in `out`. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are either disjoint or equal"] val felem_sqr: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a)) let felem_sqr a out = push_frame(); let tmp = create 5ul (u128 0) in Hacl.Impl.Curve25519.Field51.fsqr out a tmp; pop_frame() [@@ Comment "Write `a ^ (p - 2) mod p` in `out`. The function computes modular multiplicative inverse if `a` <> zero. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are disjoint"] val felem_inv: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ disjoint a out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2)) let felem_inv a out = Hacl.Bignum25519.inverse out a; Hacl.Bignum25519.reduce_513 out [@@ Comment "Load a little-endian field element from memory. The argument `b` points to 32 bytes of valid memory, i.e., uint8_t[32]. The outparam `out` points to a field element of 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `b` and `out` are disjoint NOTE that the function also performs the reduction modulo 2^255."] val felem_load: b:lbuffer uint8 32ul -> out:F51.felem -> Stack unit (requires fun h -> live h b /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.as_nat h1 out == Lib.ByteSequence.nat_from_bytes_le (as_seq h0 b) % pow2 255) let felem_load b out = Hacl.Bignum25519.load_51 out b [@@ Comment "Serialize a field element into little-endian memory. The argument `a` points to a field element of 5 limbs in size, i.e., uint64_t[5]. The outparam `out` points to 32 bytes of valid memory, i.e., uint8_t[32]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are disjoint"] val felem_store: a:F51.felem -> out:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Lib.ByteSequence.nat_to_bytes_le 32 (F51.fevalh h0 a))
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDouble.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.PointAdd.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.EC.Ed25519.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "ML" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Ed25519.Field51.felem -> out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Ed25519.Field51.felem", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Hacl.Bignum25519.store_51", "Prims.unit" ]
[]
false
true
false
false
false
let felem_store a out =
Hacl.Bignum25519.store_51 out a
false
Hacl.EC.Ed25519.fst
Hacl.EC.Ed25519.felem_inv
val felem_inv: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ disjoint a out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
val felem_inv: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ disjoint a out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
let felem_inv a out = Hacl.Bignum25519.inverse out a; Hacl.Bignum25519.reduce_513 out
{ "file_name": "code/ed25519/Hacl.EC.Ed25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 171, "start_col": 0, "start_line": 169 }
module Hacl.EC.Ed25519 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module F51 = Hacl.Impl.Ed25519.Field51 module SE = Spec.Ed25519 module SC = Spec.Curve25519 module ML = Hacl.Impl.Ed25519.Ladder #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/******************************************************************************* Verified field arithmetic modulo p = 2^255 - 19. This is a 64-bit optimized version, where a field element in radix-2^{51} is represented as an array of five unsigned 64-bit integers, i.e., uint64_t[5]. *******************************************************************************/\n"; Comment "Write the additive identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_zero: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero) let mk_felem_zero b = Hacl.Bignum25519.make_zero b [@@ Comment "Write the multiplicative identity in `f`. The outparam `f` is meant to be 5 limbs in size, i.e., uint64_t[5]."] val mk_felem_one: b:F51.felem -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one) let mk_felem_one b = Hacl.Bignum25519.make_one b [@@ Comment "Write `a + b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_add: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fadd (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_add a b out = Hacl.Impl.Curve25519.Field51.fadd out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a - b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_sub: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ (disjoint out a \/ out == a) /\ (disjoint out b \/ out == b) /\ (disjoint a b \/ a == b) /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fsub (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_sub a b out = Hacl.Impl.Curve25519.Field51.fsub out a b; Hacl.Bignum25519.reduce_513 out [@@ Comment "Write `a * b mod p` in `out`. The arguments `a`, `b`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a`, `b`, and `out` are either pairwise disjoint or equal"] val felem_mul: a:F51.felem -> b:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ F51.mul_inv_t h a /\ F51.mul_inv_t h b) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 b)) let felem_mul a b out = push_frame(); let tmp = create 10ul (u128 0) in Hacl.Impl.Curve25519.Field51.fmul out a b tmp; pop_frame() [@@ Comment "Write `a * a mod p` in `out`. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are either disjoint or equal"] val felem_sqr: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fmul (F51.fevalh h0 a) (F51.fevalh h0 a)) let felem_sqr a out = push_frame(); let tmp = create 5ul (u128 0) in Hacl.Impl.Curve25519.Field51.fsqr out a tmp; pop_frame() [@@ Comment "Write `a ^ (p - 2) mod p` in `out`. The function computes modular multiplicative inverse if `a` <> zero. The argument `a`, and the outparam `out` are meant to be 5 limbs in size, i.e., uint64_t[5]. Before calling this function, the caller will need to ensure that the following precondition is observed. • `a` and `out` are disjoint"] val felem_inv: a:F51.felem -> out:F51.felem -> Stack unit (requires fun h -> live h a /\ live h out /\ disjoint a out /\ F51.mul_inv_t h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == SC.fpow (F51.fevalh h0 a) (SC.prime - 2))
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointEqual.fst.checked", "Hacl.Impl.Ed25519.PointDouble.fst.checked", "Hacl.Impl.Ed25519.PointDecompress.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.PointAdd.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.EC.Ed25519.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Ladder", "short_module": "ML" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "Hacl.EC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Ed25519.Field51.felem -> out: Hacl.Impl.Ed25519.Field51.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Ed25519.Field51.felem", "Hacl.Bignum25519.reduce_513", "Prims.unit", "Hacl.Bignum25519.inverse" ]
[]
false
true
false
false
false
let felem_inv a out =
Hacl.Bignum25519.inverse out a; Hacl.Bignum25519.reduce_513 out
false