file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_r_inv | val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0 | val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0 | let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 15,
"end_line": 63,
"start_col": 0,
"start_line": 61
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> v: MerkleTree.Low.Datastructures.hash -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"FStar.Monotonic.HyperStack.mem",
"MerkleTree.Low.Datastructures.hash",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Lib.IntTypes.uint8",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.freeable",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.len"
] | [] | false | false | false | false | true | let hash_r_inv #hsz h v =
| B.live h v /\ B.freeable v /\ B.len v = hsz | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.reverse | val reverse (p:poly) (n:nat) : poly | val reverse (p:poly) (n:nat) : poly | let reverse p n = D.reverse p n | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 11,
"start_col": 0,
"start_line": 11
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one
let monomial n = D.monomial n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Vale.Math.Poly2_s.poly -> n: Prims.nat -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.nat",
"Vale.Math.Poly2.Defs_s.reverse"
] | [] | false | false | false | true | false | let reverse p n =
| D.reverse p n | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.monomial | val monomial (n:nat) : poly | val monomial (n:nat) : poly | let monomial n = D.monomial n | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 9,
"start_col": 0,
"start_line": 9
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Vale.Math.Poly2.Defs_s.monomial",
"Vale.Math.Poly2_s.poly"
] | [] | false | false | false | true | false | let monomial n =
| D.monomial n | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.shift | val shift (p:poly) (n:int) : poly | val shift (p:poly) (n:int) : poly | let shift p n = D.shift p n | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 10,
"start_col": 0,
"start_line": 10
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Vale.Math.Poly2_s.poly -> n: Prims.int -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.Math.Poly2.Defs_s.shift"
] | [] | false | false | false | true | false | let shift p n =
| D.shift p n | false |
Hacl.Impl.K256.PointDouble.fst | Hacl.Impl.K256.PointDouble.calc_bzz9_tmp | val calc_bzz9_tmp (yy zz bzz3 bzz9 tmp:felem) : Stack unit
(requires fun h ->
live h yy /\ live h zz /\ live h bzz3 /\ live h bzz9 /\ live h tmp /\
disjoint yy zz /\ disjoint yy bzz3 /\ disjoint yy bzz9 /\
disjoint yy tmp /\ disjoint zz bzz3 /\ disjoint zz bzz9 /\
disjoint zz tmp /\ disjoint bzz3 bzz9 /\ disjoint bzz3 tmp /\
disjoint bzz9 tmp /\
inv_lazy_reduced2 h yy /\ inv_lazy_reduced2 h zz)
(ensures fun h0 _ h1 ->
modifies (loc bzz3 |+| loc bzz9 |+| loc tmp) h0 h1 /\
(let bzz3 = S.fmul (S.fmul 3 S.b) (feval h0 zz) in
feval h1 bzz9 = S.fsub (feval h0 yy) (S.fmul 3 bzz3) /\
feval h1 tmp = S.fmul (feval h1 bzz9) (S.fadd (feval h0 yy) bzz3) /\
inv_lazy_reduced2 h1 tmp /\ felem_fits5 (as_felem5 h1 bzz9) (13,13,13,13,14))) | val calc_bzz9_tmp (yy zz bzz3 bzz9 tmp:felem) : Stack unit
(requires fun h ->
live h yy /\ live h zz /\ live h bzz3 /\ live h bzz9 /\ live h tmp /\
disjoint yy zz /\ disjoint yy bzz3 /\ disjoint yy bzz9 /\
disjoint yy tmp /\ disjoint zz bzz3 /\ disjoint zz bzz9 /\
disjoint zz tmp /\ disjoint bzz3 bzz9 /\ disjoint bzz3 tmp /\
disjoint bzz9 tmp /\
inv_lazy_reduced2 h yy /\ inv_lazy_reduced2 h zz)
(ensures fun h0 _ h1 ->
modifies (loc bzz3 |+| loc bzz9 |+| loc tmp) h0 h1 /\
(let bzz3 = S.fmul (S.fmul 3 S.b) (feval h0 zz) in
feval h1 bzz9 = S.fsub (feval h0 yy) (S.fmul 3 bzz3) /\
feval h1 tmp = S.fmul (feval h1 bzz9) (S.fadd (feval h0 yy) bzz3) /\
inv_lazy_reduced2 h1 tmp /\ felem_fits5 (as_felem5 h1 bzz9) (13,13,13,13,14))) | let calc_bzz9_tmp yy zz bzz3 bzz9 tmp =
fmul_3b_normalize_weak bzz3 zz; //bzz3 = (3*b)*zz
let h1 = ST.get () in
//assert (inv_lazy_reduced2 h1 bzz3);
fmul_small_num bzz9 bzz3 (u64 3); //bzz9 = 3*bzz3
let h2 = ST.get () in
BL.fmul15_lemma (1,1,1,1,2) 3 (as_felem5 h1 bzz3) (u64 3);
//assert (felem_fits5 (as_felem5 h2 bzz9) (3,3,3,3,6));
BL.fsub5_lemma (1,1,1,1,2) (3,3,3,3,6) (as_felem5 h1 yy) (as_felem5 h2 bzz9) (u64 6);
fsub bzz9 yy bzz9 (u64 6); //bzz9 = yy_m_bzz9 = yy-bzz9
let h3 = ST.get () in
//assert (felem_fits5 (as_felem5 h3 bzz9) (13,13,13,13,14));
fadd tmp yy bzz3; //tmp = yy_p_bzz3 = yy+bzz3
let h4 = ST.get () in
BL.fadd5_lemma (1,1,1,1,2) (1,1,1,1,2) (as_felem5 h1 yy) (as_felem5 h1 bzz3);
//assert (felem_fits5 (as_felem5 h4 tmp) (2,2,2,2,4));
fmul tmp bzz9 tmp | {
"file_name": "code/k256/Hacl.Impl.K256.PointDouble.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 19,
"end_line": 81,
"start_col": 0,
"start_line": 61
} | module Hacl.Impl.K256.PointDouble
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module S = Spec.K256
module BL = Hacl.Spec.K256.Field52.Lemmas
open Hacl.K256.Field
open Hacl.Impl.K256.Point
#set-options "--z3rlimit 300 --fuel 0 --ifuel 0"
inline_for_extraction noextract
val calc_z3 (y1 z1 z3 yy tmp:felem) : Stack unit
(requires fun h ->
live h y1 /\ live h z1 /\ live h z3 /\
live h yy /\ live h tmp /\
disjoint y1 z1 /\ disjoint y1 z3 /\ disjoint y1 yy /\
disjoint y1 tmp /\ eq_or_disjoint z1 z3 /\ disjoint z1 yy /\
disjoint z1 tmp /\ disjoint z3 yy /\ disjoint z3 tmp /\ disjoint yy tmp /\
inv_lazy_reduced2 h y1 /\ inv_lazy_reduced2 h z1 /\ inv_lazy_reduced2 h yy)
(ensures fun h0 _ h1 -> modifies (loc tmp |+| loc z3) h0 h1 /\
feval h1 z3 = S.fmul (S.fmul (S.fmul (feval h0 yy) (feval h0 y1)) (feval h0 z1)) 8 /\
inv_lazy_reduced2 h1 z3)
let calc_z3 y1 z1 z3 yy tmp =
fmul tmp yy y1; //tmp = yy*y
fmul z3 tmp z1; //z3 = tmp*z = yy*y*z
let h1 = ST.get () in
//assert (inv_lazy_reduced2 h1 x3);
//assert (inv_lazy_reduced2 h1 tmp);
//assert (inv_lazy_reduced2 h1 z3);
fmul_8_normalize_weak z3 z3 //z3 = z3*8=yy*y*z*8
inline_for_extraction noextract
val calc_bzz9_tmp (yy zz bzz3 bzz9 tmp:felem) : Stack unit
(requires fun h ->
live h yy /\ live h zz /\ live h bzz3 /\ live h bzz9 /\ live h tmp /\
disjoint yy zz /\ disjoint yy bzz3 /\ disjoint yy bzz9 /\
disjoint yy tmp /\ disjoint zz bzz3 /\ disjoint zz bzz9 /\
disjoint zz tmp /\ disjoint bzz3 bzz9 /\ disjoint bzz3 tmp /\
disjoint bzz9 tmp /\
inv_lazy_reduced2 h yy /\ inv_lazy_reduced2 h zz)
(ensures fun h0 _ h1 ->
modifies (loc bzz3 |+| loc bzz9 |+| loc tmp) h0 h1 /\
(let bzz3 = S.fmul (S.fmul 3 S.b) (feval h0 zz) in
feval h1 bzz9 = S.fsub (feval h0 yy) (S.fmul 3 bzz3) /\
feval h1 tmp = S.fmul (feval h1 bzz9) (S.fadd (feval h0 yy) bzz3) /\
inv_lazy_reduced2 h1 tmp /\ felem_fits5 (as_felem5 h1 bzz9) (13,13,13,13,14))) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Field52.Lemmas.fsti.checked",
"Hacl.K256.Field.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.PointDouble.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Field",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Lemmas",
"short_module": "BL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
yy: Hacl.K256.Field.felem ->
zz: Hacl.K256.Field.felem ->
bzz3: Hacl.K256.Field.felem ->
bzz9: Hacl.K256.Field.felem ->
tmp: Hacl.K256.Field.felem
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.K256.Field.felem",
"Hacl.K256.Field.fmul",
"Prims.unit",
"Hacl.Spec.K256.Field52.Lemmas.fadd5_lemma",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Hacl.K256.Field.as_felem5",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Field.fadd",
"Hacl.K256.Field.fsub",
"Lib.IntTypes.u64",
"Hacl.Spec.K256.Field52.Lemmas.fsub5_lemma",
"Hacl.Spec.K256.Field52.Lemmas.fmul15_lemma",
"Hacl.K256.Field.fmul_small_num",
"Hacl.K256.Field.fmul_3b_normalize_weak"
] | [] | false | true | false | false | false | let calc_bzz9_tmp yy zz bzz3 bzz9 tmp =
| fmul_3b_normalize_weak bzz3 zz;
let h1 = ST.get () in
fmul_small_num bzz9 bzz3 (u64 3);
let h2 = ST.get () in
BL.fmul15_lemma (1, 1, 1, 1, 2) 3 (as_felem5 h1 bzz3) (u64 3);
BL.fsub5_lemma (1, 1, 1, 1, 2) (3, 3, 3, 3, 6) (as_felem5 h1 yy) (as_felem5 h2 bzz9) (u64 6);
fsub bzz9 yy bzz9 (u64 6);
let h3 = ST.get () in
fadd tmp yy bzz3;
let h4 = ST.get () in
BL.fadd5_lemma (1, 1, 1, 1, 2) (1, 1, 1, 1, 2) (as_felem5 h1 yy) (as_felem5 h1 bzz3);
fmul tmp bzz9 tmp | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.poly_index | val poly_index (p:poly) (n:int) : bool | val poly_index (p:poly) (n:int) : bool | let poly_index p n = D.poly_index p n | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 37,
"end_line": 12,
"start_col": 0,
"start_line": 12
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one
let monomial n = D.monomial n
let shift p n = D.shift p n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Vale.Math.Poly2_s.poly -> n: Prims.int -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.Math.Poly2.Defs_s.poly_index",
"Prims.bool"
] | [] | false | false | false | true | false | let poly_index p n =
| D.poly_index p n | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.add | val add (a b:poly) : poly | val add (a b:poly) : poly | let add a b = D.add a b | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 16,
"start_col": 0,
"start_line": 16
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one
let monomial n = D.monomial n
let shift p n = D.shift p n
let reverse p n = D.reverse p n
let poly_index p n = D.poly_index p n
let to_seq s n = D.to_seq s n
let of_seq s = D.of_seq s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2.Defs_s.add"
] | [] | false | false | false | true | false | let add a b =
| D.add a b | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.mul | val mul (a b:poly) : poly | val mul (a b:poly) : poly | let mul a b = D.mul a b | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 17,
"start_col": 0,
"start_line": 17
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one
let monomial n = D.monomial n
let shift p n = D.shift p n
let reverse p n = D.reverse p n
let poly_index p n = D.poly_index p n
let to_seq s n = D.to_seq s n
let of_seq s = D.of_seq s
let of_fun len f = D.of_fun len f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2.Defs_s.mul"
] | [] | false | false | false | true | false | let mul a b =
| D.mul a b | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.zero | val zero : poly | val zero : poly | let zero = D.zero | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 7,
"start_col": 0,
"start_line": 7
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2.Defs_s.zero"
] | [] | false | false | false | true | false | let zero =
| D.zero | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.poly | val poly : eqtype | val poly : eqtype | let poly = D.poly | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 5,
"start_col": 0,
"start_line": 5
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.eqtype | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly"
] | [] | false | false | false | true | false | let poly =
| D.poly | false |
FStar.UInt64.fsti | FStar.UInt64.n | val n : Prims.int | let n = 64 | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 20,
"start_col": 7,
"start_line": 20
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.int | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let n =
| 64 | false |
|
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_r_alloc_p | val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0 | val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0 | let hash_r_alloc_p #_ v = True | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 30,
"end_line": 112,
"start_col": 0,
"start_line": 112
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v: MerkleTree.Low.Datastructures.hash -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"MerkleTree.Low.Datastructures.hash",
"Prims.l_True"
] | [] | false | false | false | false | true | let hash_r_alloc_p #_ v =
| True | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.one | val one : poly | val one : poly | let one = D.one | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 15,
"end_line": 8,
"start_col": 0,
"start_line": 8
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2.Defs_s.one"
] | [] | false | false | false | true | false | let one =
| D.one | false |
FStar.UInt64.fsti | FStar.UInt64.eq | val eq (a b: t) : Tot bool | val eq (a b: t) : Tot bool | let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 223,
"start_col": 0,
"start_line": 223
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.eq",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.bool"
] | [] | false | false | false | true | false | let eq (a b: t) : Tot bool =
| eq #n (v a) (v b) | false |
FStar.UInt64.fsti | FStar.UInt64.gt | val gt (a b: t) : Tot bool | val gt (a b: t) : Tot bool | let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 226,
"start_col": 0,
"start_line": 226
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.gt",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.bool"
] | [] | false | false | false | true | false | let gt (a b: t) : Tot bool =
| gt #n (v a) (v b) | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.of_seq | val of_seq (s:seq bool) : Pure poly
(requires True)
(ensures fun p ->
degree p < length s /\
(forall (i:nat).{:pattern (p.[i]) \/ (index s i)} i < length s ==> p.[i] == index s i)
) | val of_seq (s:seq bool) : Pure poly
(requires True)
(ensures fun p ->
degree p < length s /\
(forall (i:nat).{:pattern (p.[i]) \/ (index s i)} i < length s ==> p.[i] == index s i)
) | let of_seq s = D.of_seq s | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 14,
"start_col": 0,
"start_line": 14
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one
let monomial n = D.monomial n
let shift p n = D.shift p n
let reverse p n = D.reverse p n
let poly_index p n = D.poly_index p n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq Prims.bool -> Prims.Pure Vale.Math.Poly2_s.poly | Prims.Pure | [] | [] | [
"FStar.Seq.Base.seq",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.of_seq",
"Vale.Math.Poly2_s.poly"
] | [] | false | false | false | false | false | let of_seq s =
| D.of_seq s | false |
Hacl.Impl.K256.PointDouble.fst | Hacl.Impl.K256.PointDouble.point_double | val point_double (out p:point) : Stack unit
(requires fun h ->
live h out /\ live h p /\ eq_or_disjoint out p /\
point_inv h p)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ point_inv h1 out /\
point_eval h1 out == S.point_double (point_eval h0 p)) | val point_double (out p:point) : Stack unit
(requires fun h ->
live h out /\ live h p /\ eq_or_disjoint out p /\
point_inv h p)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ point_inv h1 out /\
point_eval h1 out == S.point_double (point_eval h0 p)) | let point_double out p =
push_frame ();
let tmp = create (5ul *! nlimb) (u64 0) in
point_double_no_alloc out p tmp;
pop_frame () | {
"file_name": "code/k256/Hacl.Impl.K256.PointDouble.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 159,
"start_col": 0,
"start_line": 155
} | module Hacl.Impl.K256.PointDouble
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module S = Spec.K256
module BL = Hacl.Spec.K256.Field52.Lemmas
open Hacl.K256.Field
open Hacl.Impl.K256.Point
#set-options "--z3rlimit 300 --fuel 0 --ifuel 0"
inline_for_extraction noextract
val calc_z3 (y1 z1 z3 yy tmp:felem) : Stack unit
(requires fun h ->
live h y1 /\ live h z1 /\ live h z3 /\
live h yy /\ live h tmp /\
disjoint y1 z1 /\ disjoint y1 z3 /\ disjoint y1 yy /\
disjoint y1 tmp /\ eq_or_disjoint z1 z3 /\ disjoint z1 yy /\
disjoint z1 tmp /\ disjoint z3 yy /\ disjoint z3 tmp /\ disjoint yy tmp /\
inv_lazy_reduced2 h y1 /\ inv_lazy_reduced2 h z1 /\ inv_lazy_reduced2 h yy)
(ensures fun h0 _ h1 -> modifies (loc tmp |+| loc z3) h0 h1 /\
feval h1 z3 = S.fmul (S.fmul (S.fmul (feval h0 yy) (feval h0 y1)) (feval h0 z1)) 8 /\
inv_lazy_reduced2 h1 z3)
let calc_z3 y1 z1 z3 yy tmp =
fmul tmp yy y1; //tmp = yy*y
fmul z3 tmp z1; //z3 = tmp*z = yy*y*z
let h1 = ST.get () in
//assert (inv_lazy_reduced2 h1 x3);
//assert (inv_lazy_reduced2 h1 tmp);
//assert (inv_lazy_reduced2 h1 z3);
fmul_8_normalize_weak z3 z3 //z3 = z3*8=yy*y*z*8
inline_for_extraction noextract
val calc_bzz9_tmp (yy zz bzz3 bzz9 tmp:felem) : Stack unit
(requires fun h ->
live h yy /\ live h zz /\ live h bzz3 /\ live h bzz9 /\ live h tmp /\
disjoint yy zz /\ disjoint yy bzz3 /\ disjoint yy bzz9 /\
disjoint yy tmp /\ disjoint zz bzz3 /\ disjoint zz bzz9 /\
disjoint zz tmp /\ disjoint bzz3 bzz9 /\ disjoint bzz3 tmp /\
disjoint bzz9 tmp /\
inv_lazy_reduced2 h yy /\ inv_lazy_reduced2 h zz)
(ensures fun h0 _ h1 ->
modifies (loc bzz3 |+| loc bzz9 |+| loc tmp) h0 h1 /\
(let bzz3 = S.fmul (S.fmul 3 S.b) (feval h0 zz) in
feval h1 bzz9 = S.fsub (feval h0 yy) (S.fmul 3 bzz3) /\
feval h1 tmp = S.fmul (feval h1 bzz9) (S.fadd (feval h0 yy) bzz3) /\
inv_lazy_reduced2 h1 tmp /\ felem_fits5 (as_felem5 h1 bzz9) (13,13,13,13,14)))
let calc_bzz9_tmp yy zz bzz3 bzz9 tmp =
fmul_3b_normalize_weak bzz3 zz; //bzz3 = (3*b)*zz
let h1 = ST.get () in
//assert (inv_lazy_reduced2 h1 bzz3);
fmul_small_num bzz9 bzz3 (u64 3); //bzz9 = 3*bzz3
let h2 = ST.get () in
BL.fmul15_lemma (1,1,1,1,2) 3 (as_felem5 h1 bzz3) (u64 3);
//assert (felem_fits5 (as_felem5 h2 bzz9) (3,3,3,3,6));
BL.fsub5_lemma (1,1,1,1,2) (3,3,3,3,6) (as_felem5 h1 yy) (as_felem5 h2 bzz9) (u64 6);
fsub bzz9 yy bzz9 (u64 6); //bzz9 = yy_m_bzz9 = yy-bzz9
let h3 = ST.get () in
//assert (felem_fits5 (as_felem5 h3 bzz9) (13,13,13,13,14));
fadd tmp yy bzz3; //tmp = yy_p_bzz3 = yy+bzz3
let h4 = ST.get () in
BL.fadd5_lemma (1,1,1,1,2) (1,1,1,1,2) (as_felem5 h1 yy) (as_felem5 h1 bzz3);
//assert (felem_fits5 (as_felem5 h4 tmp) (2,2,2,2,4));
fmul tmp bzz9 tmp //tmp = bzz9*tmp = yy_m_bzz9*yy_p_bzz3
inline_for_extraction noextract
val calc_y3 (y3 tmp: felem) : Stack unit
(requires fun h ->
live h y3 /\ live h tmp /\ disjoint y3 tmp /\
inv_lazy_reduced2 h y3 /\ inv_lazy_reduced2 h tmp)
(ensures fun h0 _ h1 -> modifies (loc y3) h0 h1 /\
feval h1 y3 = S.fadd (feval h0 tmp) (S.fmul (S.fmul 24 S.b) (feval h0 y3))/\
inv_lazy_reduced2 h1 y3)
let calc_y3 y3 tmp =
let h0 = ST.get () in
fmul_small_num y3 y3 (u64 168); //y3 = t = (24*b)*y3 = (24*b)*yy_zz
let h1 = ST.get () in
BL.fmul15_lemma (1,1,1,1,2) 168 (as_felem5 h0 y3) (u64 168);
//assert (felem_fits5 (as_felem5 h1 y3) (168,168,168,168,336));
fadd y3 tmp y3; //y3 = tmp+y3 = yy_m_bzz9*yy_p_bzz3+t
let h2 = ST.get () in
BL.fadd5_lemma (1,1,1,1,2) (168,168,168,168,336) (as_felem5 h0 tmp) (as_felem5 h1 y3);
//assert (felem_fits5 (as_felem5 h2 y3) (169,169,169,169,338));
fnormalize_weak y3 y3;
BL.normalize_weak5_lemma (169,169,169,169,338) (as_felem5 h2 y3)
inline_for_extraction noextract
val point_double_no_alloc (out p:point) (tmp:lbuffer uint64 (5ul *! nlimb)) : Stack unit
(requires fun h ->
live h out /\ live h p /\ live h tmp /\
eq_or_disjoint out p /\ disjoint out tmp /\ disjoint p tmp /\
point_inv h p)
(ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ point_inv h1 out /\
point_eval h1 out == S.point_double (point_eval h0 p))
let point_double_no_alloc out p tmp =
let x1, y1, z1 = getx p, gety p, getz p in
let x3, y3, z3 = getx out, gety out, getz out in
let yy = sub tmp 0ul nlimb in
let zz = sub tmp nlimb nlimb in
let bzz3 = sub tmp (2ul *! nlimb) nlimb in
let bzz9 = sub tmp (3ul *! nlimb) nlimb in
let tmp = sub tmp (4ul *! nlimb) nlimb in
let h0 = ST.get () in
fsqr yy y1; //yy = y*y
fsqr zz z1; //zz = z*z
let h1 = ST.get () in
//assert (inv_lazy_reduced2 h1 yy);
//assert (inv_lazy_reduced2 h1 zz);
fmul_small_num x3 x1 (u64 2); //x3 = 2*x
let h2 = ST.get () in
BL.fmul15_lemma (1,1,1,1,2) 2 (as_felem5 h1 x1) (u64 2);
//assert (felem_fits5 (as_felem5 h2 x3) (2,2,2,2,4));
fmul x3 x3 y1; //x3 = xy2 = x3*y = (2*x)*y
calc_z3 y1 z1 z3 yy tmp;
calc_bzz9_tmp yy zz bzz3 bzz9 tmp;
fmul y3 yy zz; //y3 = yy_zz = yy*zz
fmul x3 x3 bzz9; //x3 = x3*bzz9 = xy2*yy_m_bzz9
calc_y3 y3 tmp
val point_double (out p:point) : Stack unit
(requires fun h ->
live h out /\ live h p /\ eq_or_disjoint out p /\
point_inv h p)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ point_inv h1 out /\
point_eval h1 out == S.point_double (point_eval h0 p)) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Field52.Lemmas.fsti.checked",
"Hacl.K256.Field.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.PointDouble.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Field",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Lemmas",
"short_module": "BL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | out: Hacl.Impl.K256.Point.point -> p: Hacl.Impl.K256.Point.point
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.K256.Point.point",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.K256.PointDouble.point_double_no_alloc",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.mul",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Hacl.K256.Field.nlimb",
"Lib.Buffer.create",
"Lib.IntTypes.uint64",
"Lib.IntTypes.op_Star_Bang",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.u64",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let point_double out p =
| push_frame ();
let tmp = create (5ul *! nlimb) (u64 0) in
point_double_no_alloc out p tmp;
pop_frame () | false |
Hacl.Impl.K256.PointDouble.fst | Hacl.Impl.K256.PointDouble.calc_y3 | val calc_y3 (y3 tmp: felem) : Stack unit
(requires fun h ->
live h y3 /\ live h tmp /\ disjoint y3 tmp /\
inv_lazy_reduced2 h y3 /\ inv_lazy_reduced2 h tmp)
(ensures fun h0 _ h1 -> modifies (loc y3) h0 h1 /\
feval h1 y3 = S.fadd (feval h0 tmp) (S.fmul (S.fmul 24 S.b) (feval h0 y3))/\
inv_lazy_reduced2 h1 y3) | val calc_y3 (y3 tmp: felem) : Stack unit
(requires fun h ->
live h y3 /\ live h tmp /\ disjoint y3 tmp /\
inv_lazy_reduced2 h y3 /\ inv_lazy_reduced2 h tmp)
(ensures fun h0 _ h1 -> modifies (loc y3) h0 h1 /\
feval h1 y3 = S.fadd (feval h0 tmp) (S.fmul (S.fmul 24 S.b) (feval h0 y3))/\
inv_lazy_reduced2 h1 y3) | let calc_y3 y3 tmp =
let h0 = ST.get () in
fmul_small_num y3 y3 (u64 168); //y3 = t = (24*b)*y3 = (24*b)*yy_zz
let h1 = ST.get () in
BL.fmul15_lemma (1,1,1,1,2) 168 (as_felem5 h0 y3) (u64 168);
//assert (felem_fits5 (as_felem5 h1 y3) (168,168,168,168,336));
fadd y3 tmp y3; //y3 = tmp+y3 = yy_m_bzz9*yy_p_bzz3+t
let h2 = ST.get () in
BL.fadd5_lemma (1,1,1,1,2) (168,168,168,168,336) (as_felem5 h0 tmp) (as_felem5 h1 y3);
//assert (felem_fits5 (as_felem5 h2 y3) (169,169,169,169,338));
fnormalize_weak y3 y3;
BL.normalize_weak5_lemma (169,169,169,169,338) (as_felem5 h2 y3) | {
"file_name": "code/k256/Hacl.Impl.K256.PointDouble.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 66,
"end_line": 105,
"start_col": 0,
"start_line": 93
} | module Hacl.Impl.K256.PointDouble
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module S = Spec.K256
module BL = Hacl.Spec.K256.Field52.Lemmas
open Hacl.K256.Field
open Hacl.Impl.K256.Point
#set-options "--z3rlimit 300 --fuel 0 --ifuel 0"
inline_for_extraction noextract
val calc_z3 (y1 z1 z3 yy tmp:felem) : Stack unit
(requires fun h ->
live h y1 /\ live h z1 /\ live h z3 /\
live h yy /\ live h tmp /\
disjoint y1 z1 /\ disjoint y1 z3 /\ disjoint y1 yy /\
disjoint y1 tmp /\ eq_or_disjoint z1 z3 /\ disjoint z1 yy /\
disjoint z1 tmp /\ disjoint z3 yy /\ disjoint z3 tmp /\ disjoint yy tmp /\
inv_lazy_reduced2 h y1 /\ inv_lazy_reduced2 h z1 /\ inv_lazy_reduced2 h yy)
(ensures fun h0 _ h1 -> modifies (loc tmp |+| loc z3) h0 h1 /\
feval h1 z3 = S.fmul (S.fmul (S.fmul (feval h0 yy) (feval h0 y1)) (feval h0 z1)) 8 /\
inv_lazy_reduced2 h1 z3)
let calc_z3 y1 z1 z3 yy tmp =
fmul tmp yy y1; //tmp = yy*y
fmul z3 tmp z1; //z3 = tmp*z = yy*y*z
let h1 = ST.get () in
//assert (inv_lazy_reduced2 h1 x3);
//assert (inv_lazy_reduced2 h1 tmp);
//assert (inv_lazy_reduced2 h1 z3);
fmul_8_normalize_weak z3 z3 //z3 = z3*8=yy*y*z*8
inline_for_extraction noextract
val calc_bzz9_tmp (yy zz bzz3 bzz9 tmp:felem) : Stack unit
(requires fun h ->
live h yy /\ live h zz /\ live h bzz3 /\ live h bzz9 /\ live h tmp /\
disjoint yy zz /\ disjoint yy bzz3 /\ disjoint yy bzz9 /\
disjoint yy tmp /\ disjoint zz bzz3 /\ disjoint zz bzz9 /\
disjoint zz tmp /\ disjoint bzz3 bzz9 /\ disjoint bzz3 tmp /\
disjoint bzz9 tmp /\
inv_lazy_reduced2 h yy /\ inv_lazy_reduced2 h zz)
(ensures fun h0 _ h1 ->
modifies (loc bzz3 |+| loc bzz9 |+| loc tmp) h0 h1 /\
(let bzz3 = S.fmul (S.fmul 3 S.b) (feval h0 zz) in
feval h1 bzz9 = S.fsub (feval h0 yy) (S.fmul 3 bzz3) /\
feval h1 tmp = S.fmul (feval h1 bzz9) (S.fadd (feval h0 yy) bzz3) /\
inv_lazy_reduced2 h1 tmp /\ felem_fits5 (as_felem5 h1 bzz9) (13,13,13,13,14)))
let calc_bzz9_tmp yy zz bzz3 bzz9 tmp =
fmul_3b_normalize_weak bzz3 zz; //bzz3 = (3*b)*zz
let h1 = ST.get () in
//assert (inv_lazy_reduced2 h1 bzz3);
fmul_small_num bzz9 bzz3 (u64 3); //bzz9 = 3*bzz3
let h2 = ST.get () in
BL.fmul15_lemma (1,1,1,1,2) 3 (as_felem5 h1 bzz3) (u64 3);
//assert (felem_fits5 (as_felem5 h2 bzz9) (3,3,3,3,6));
BL.fsub5_lemma (1,1,1,1,2) (3,3,3,3,6) (as_felem5 h1 yy) (as_felem5 h2 bzz9) (u64 6);
fsub bzz9 yy bzz9 (u64 6); //bzz9 = yy_m_bzz9 = yy-bzz9
let h3 = ST.get () in
//assert (felem_fits5 (as_felem5 h3 bzz9) (13,13,13,13,14));
fadd tmp yy bzz3; //tmp = yy_p_bzz3 = yy+bzz3
let h4 = ST.get () in
BL.fadd5_lemma (1,1,1,1,2) (1,1,1,1,2) (as_felem5 h1 yy) (as_felem5 h1 bzz3);
//assert (felem_fits5 (as_felem5 h4 tmp) (2,2,2,2,4));
fmul tmp bzz9 tmp //tmp = bzz9*tmp = yy_m_bzz9*yy_p_bzz3
inline_for_extraction noextract
val calc_y3 (y3 tmp: felem) : Stack unit
(requires fun h ->
live h y3 /\ live h tmp /\ disjoint y3 tmp /\
inv_lazy_reduced2 h y3 /\ inv_lazy_reduced2 h tmp)
(ensures fun h0 _ h1 -> modifies (loc y3) h0 h1 /\
feval h1 y3 = S.fadd (feval h0 tmp) (S.fmul (S.fmul 24 S.b) (feval h0 y3))/\
inv_lazy_reduced2 h1 y3) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Field52.Lemmas.fsti.checked",
"Hacl.K256.Field.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.PointDouble.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Field",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Lemmas",
"short_module": "BL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | y3: Hacl.K256.Field.felem -> tmp: Hacl.K256.Field.felem -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.K256.Field.felem",
"Hacl.Spec.K256.Field52.Lemmas.normalize_weak5_lemma",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Hacl.K256.Field.as_felem5",
"Prims.unit",
"Hacl.K256.Field.fnormalize_weak",
"Hacl.Spec.K256.Field52.Lemmas.fadd5_lemma",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Field.fadd",
"Hacl.Spec.K256.Field52.Lemmas.fmul15_lemma",
"Lib.IntTypes.u64",
"Hacl.K256.Field.fmul_small_num"
] | [] | false | true | false | false | false | let calc_y3 y3 tmp =
| let h0 = ST.get () in
fmul_small_num y3 y3 (u64 168);
let h1 = ST.get () in
BL.fmul15_lemma (1, 1, 1, 1, 2) 168 (as_felem5 h0 y3) (u64 168);
fadd y3 tmp y3;
let h2 = ST.get () in
BL.fadd5_lemma (1, 1, 1, 1, 2) (168, 168, 168, 168, 336) (as_felem5 h0 tmp) (as_felem5 h1 y3);
fnormalize_weak y3 y3;
BL.normalize_weak5_lemma (169, 169, 169, 169, 338) (as_felem5 h2 y3) | false |
FStar.UInt64.fsti | FStar.UInt64.gte | val gte (a b: t) : Tot bool | val gte (a b: t) : Tot bool | let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 229,
"start_col": 0,
"start_line": 229
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.gte",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.bool"
] | [] | false | false | false | true | false | let gte (a b: t) : Tot bool =
| gte #n (v a) (v b) | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.of_fun | val of_fun (len:nat) (f:nat -> bool) : Pure poly
(requires True)
(ensures fun p ->
degree p < len /\
(forall (i:nat).{:pattern p.[i] \/ (f i)} i < len ==> p.[i] == f i) /\
(forall (i:int).{:pattern p.[i]} p.[i] ==> 0 <= i /\ i < len)
) | val of_fun (len:nat) (f:nat -> bool) : Pure poly
(requires True)
(ensures fun p ->
degree p < len /\
(forall (i:nat).{:pattern p.[i] \/ (f i)} i < len ==> p.[i] == f i) /\
(forall (i:int).{:pattern p.[i]} p.[i] ==> 0 <= i /\ i < len)
) | let of_fun len f = D.of_fun len f | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 15,
"start_col": 0,
"start_line": 15
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one
let monomial n = D.monomial n
let shift p n = D.shift p n
let reverse p n = D.reverse p n
let poly_index p n = D.poly_index p n
let to_seq s n = D.to_seq s n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.nat -> f: (_: Prims.nat -> Prims.bool) -> Prims.Pure Vale.Math.Poly2_s.poly | Prims.Pure | [] | [] | [
"Prims.nat",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.of_fun",
"Vale.Math.Poly2_s.poly"
] | [] | false | false | false | false | false | let of_fun len f =
| D.of_fun len f | false |
FStar.UInt64.fsti | FStar.UInt64.lt | val lt (a b: t) : Tot bool | val lt (a b: t) : Tot bool | let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 232,
"start_col": 0,
"start_line": 232
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.lt",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.bool"
] | [] | false | false | false | true | false | let lt (a b: t) : Tot bool =
| lt #n (v a) (v b) | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_region_of | val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid | val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid | let hash_vec_region_of #_ v = V.frameOf v | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 41,
"end_line": 202,
"start_col": 0,
"start_line": 202
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v: MerkleTree.Low.Datastructures.hash_vec -> Prims.GTot FStar.Monotonic.HyperHeap.rid | Prims.GTot | [
"sometrivial"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"MerkleTree.Low.Datastructures.hash_vec",
"LowStar.Vector.frameOf",
"MerkleTree.Low.Datastructures.hash",
"FStar.Monotonic.HyperHeap.rid"
] | [] | false | false | false | false | false | let hash_vec_region_of #_ v =
| V.frameOf v | false |
FStar.UInt64.fsti | FStar.UInt64.lte | val lte (a b: t) : Tot bool | val lte (a b: t) : Tot bool | let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 235,
"start_col": 0,
"start_line": 235
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt.lte",
"FStar.UInt64.n",
"FStar.UInt64.v",
"Prims.bool"
] | [] | false | false | false | true | false | let lte (a b: t) : Tot bool =
| lte #n (v a) (v b) | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.to_seq | val to_seq (p:poly) (n:nat) : Pure (seq bool)
(requires True)
(ensures fun s ->
length s == n /\
(forall (i:nat).{:pattern (p.[i]) \/ (index s i)} i < length s ==> p.[i] == index s i)
) | val to_seq (p:poly) (n:nat) : Pure (seq bool)
(requires True)
(ensures fun s ->
length s == n /\
(forall (i:nat).{:pattern (p.[i]) \/ (index s i)} i < length s ==> p.[i] == index s i)
) | let to_seq s n = D.to_seq s n | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 13,
"start_col": 0,
"start_line": 13
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one
let monomial n = D.monomial n
let shift p n = D.shift p n
let reverse p n = D.reverse p n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Vale.Math.Poly2_s.poly -> n: Prims.nat -> Prims.Pure (FStar.Seq.Base.seq Prims.bool) | Prims.Pure | [] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.nat",
"Vale.Math.Poly2.Defs_s.to_seq",
"FStar.Seq.Base.seq",
"Prims.bool"
] | [] | false | false | false | false | false | let to_seq s n =
| D.to_seq s n | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.div | val div (a b:poly) : poly | val div (a b:poly) : poly | let div a b = if degree b >= 0 then D.div a b else undefined_div_by_zero a | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 74,
"end_line": 22,
"start_col": 0,
"start_line": 22
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one
let monomial n = D.monomial n
let shift p n = D.shift p n
let reverse p n = D.reverse p n
let poly_index p n = D.poly_index p n
let to_seq s n = D.to_seq s n
let of_seq s = D.of_seq s
let of_fun len f = D.of_fun len f
let add a b = D.add a b
let mul a b = D.mul a b
assume val undefined_div_by_zero (a:poly) : poly
assume val undefined_mod_by_zero (a:poly) : poly | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.op_GreaterThanOrEqual",
"Vale.Math.Poly2_s.degree",
"Vale.Math.Poly2.Defs_s.div",
"Prims.bool",
"Vale.Math.Poly2_s.undefined_div_by_zero"
] | [] | false | false | false | true | false | let div a b =
| if degree b >= 0 then D.div a b else undefined_div_by_zero a | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_dummy | val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz | val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz | let hash_vec_dummy #_ = V.alloc_empty (hash #_) | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 47,
"end_line": 206,
"start_col": 0,
"start_line": 206
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MerkleTree.Low.Datastructures.hash_vec | Prims.Tot | [
"total"
] | [] | [
"FStar.Ghost.erased",
"MerkleTree.Low.Datastructures.hash_size_t",
"LowStar.Vector.alloc_empty",
"MerkleTree.Low.Datastructures.hash",
"FStar.Ghost.reveal",
"MerkleTree.Low.Datastructures.hash_vec"
] | [] | false | false | false | false | false | let hash_vec_dummy #_ =
| V.alloc_empty (hash #_) | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_r_inv | val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0 | val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0 | let hash_vec_r_inv #hsz h v = RV.rv_inv h v | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 43,
"end_line": 210,
"start_col": 0,
"start_line": 210
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> v: MerkleTree.Low.Datastructures.hash_vec -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"FStar.Monotonic.HyperStack.mem",
"MerkleTree.Low.Datastructures.hash_vec",
"LowStar.RVector.rv_inv",
"MerkleTree.Low.Datastructures.hash",
"MerkleTree.Low.Datastructures.hreg"
] | [] | false | false | false | false | true | let hash_vec_r_inv #hsz h v =
| RV.rv_inv h v | false |
Vale.Math.Poly2_s.fst | Vale.Math.Poly2_s.mod | val mod (a b:poly) : poly | val mod (a b:poly) : poly | let mod a b = if degree b >= 0 then D.mod a b else undefined_mod_by_zero a | {
"file_name": "vale/specs/math/Vale.Math.Poly2_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 74,
"end_line": 23,
"start_col": 0,
"start_line": 23
} | module Vale.Math.Poly2_s
open FStar.Mul
open FStar.Seq
let poly = D.poly
let degree p = D.degree p
let zero = D.zero
let one = D.one
let monomial n = D.monomial n
let shift p n = D.shift p n
let reverse p n = D.reverse p n
let poly_index p n = D.poly_index p n
let to_seq s n = D.to_seq s n
let of_seq s = D.of_seq s
let of_fun len f = D.of_fun len f
let add a b = D.add a b
let mul a b = D.mul a b
assume val undefined_div_by_zero (a:poly) : poly
assume val undefined_mod_by_zero (a:poly) : poly | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.op_GreaterThanOrEqual",
"Vale.Math.Poly2_s.degree",
"Vale.Math.Poly2.Defs_s.mod",
"Prims.bool",
"Vale.Math.Poly2_s.undefined_mod_by_zero"
] | [] | false | false | false | true | false | let mod a b =
| if degree b >= 0 then D.mod a b else undefined_mod_by_zero a | false |
FStar.UInt64.fsti | FStar.UInt64.op_Subtraction_Percent_Hat | val op_Subtraction_Percent_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Subtraction_Percent_Hat = sub_mod | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 321,
"start_col": 7,
"start_line": 321
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.sub_mod"
] | [] | false | false | false | false | false | let op_Subtraction_Percent_Hat =
| sub_mod | false |
|
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_r_alloc_p | val hash_vec_r_alloc_p: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot Type0 | val hash_vec_r_alloc_p: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot Type0 | let hash_vec_r_alloc_p #_ v = V.size_of v = 0ul | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 47,
"end_line": 253,
"start_col": 0,
"start_line": 253
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract
val hash_vec_repr: #hsz:hash_size_t -> Type0
let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz)
noextract
val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz)
let hash_vec_r_repr #_ h v =
RV.as_seq h v
noextract
val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\
hash_vec_r_repr h0 v == hash_vec_r_repr h1 v))
let hash_vec_r_sep #_ v p h0 h1 =
RV.rv_inv_preserved v p h0 h1;
RV.as_seq_preserved v p h0 h1
noextract
val hash_vec_irepr: #hsz:hash_size_t -> Ghost.erased (hash_vec_repr #hsz)
let hash_vec_irepr #_ = Ghost.hide S.empty
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v: MerkleTree.Low.Datastructures.hash_vec -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"MerkleTree.Low.Datastructures.hash_vec",
"Prims.b2t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowStar.Vector.size_of",
"MerkleTree.Low.Datastructures.hash",
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | false | true | let hash_vec_r_alloc_p #_ v =
| V.size_of v = 0ul | false |
FStar.UInt64.fsti | FStar.UInt64.op_Subtraction_Hat | val op_Subtraction_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Subtraction_Hat = sub | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 319,
"start_col": 7,
"start_line": 319
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.sub"
] | [] | false | false | false | false | false | let op_Subtraction_Hat =
| sub | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Plus_Question_Hat | val op_Plus_Question_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Plus_Question_Hat = add_underspec | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 317,
"start_col": 7,
"start_line": 317
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.add_underspec"
] | [] | false | false | false | false | false | let op_Plus_Question_Hat =
| add_underspec | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Plus_Hat | val op_Plus_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Plus_Hat = add | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 316,
"start_col": 7,
"start_line": 316
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.add"
] | [] | false | false | false | false | false | let op_Plus_Hat =
| add | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Plus_Percent_Hat | val op_Plus_Percent_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Plus_Percent_Hat = add_mod | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 318,
"start_col": 7,
"start_line": 318
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.add_mod"
] | [] | false | false | false | false | false | let op_Plus_Percent_Hat =
| add_mod | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Subtraction_Question_Hat | val op_Subtraction_Question_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Subtraction_Question_Hat = sub_underspec | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 320,
"start_col": 7,
"start_line": 320
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.sub_underspec"
] | [] | false | false | false | false | false | let op_Subtraction_Question_Hat =
| sub_underspec | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Star_Question_Hat | val op_Star_Question_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Star_Question_Hat = mul_underspec | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 323,
"start_col": 7,
"start_line": 323
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.mul_underspec"
] | [] | false | false | false | false | false | let op_Star_Question_Hat =
| mul_underspec | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Star_Hat | val op_Star_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Star_Hat = mul | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 322,
"start_col": 7,
"start_line": 322
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.mul"
] | [] | false | false | false | false | false | let op_Star_Hat =
| mul | false |
|
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.write_bcvli | val write_bcvli:leaf_writer_strong serialize_bcvli | val write_bcvli:leaf_writer_strong serialize_bcvli | let write_bcvli : leaf_writer_strong serialize_bcvli =
leaf_writer_strong_of_serializer32 serialize32_bcvli () | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 57,
"end_line": 177,
"start_col": 0,
"start_line": 176
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1
let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t
#pop-options
module U8 = FStar.UInt8
#push-options "--z3rlimit 32"
inline_for_extraction
let serialize32_bcvli'
(x: U32.t)
(#rrel #rel: _)
(b: B.mbuffer U8.t rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\
U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h
))
(ensures (fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\ (
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\
B.live h b /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` serialize serialize_bcvli x
)))
= // [@inline_let] let _ =
serialize_bcvli_eq x
; // in
let c : bounded_integer 1 =
if x `U32.lt` 253ul
then x
else if x `U32.lt` 65536ul
then 253ul
else 254ul
in
[@inline_let]
let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1) in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@inline_let]
let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then begin
len1
end else if c = 253ul
then begin
[@inline_let]
let _ = assert (U32.v x < 65536) in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 2) in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end else begin
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 4) in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end
inline_for_extraction
let serialize32_bcvli : serializer32 serialize_bcvli =
fun (x: U32.t) #rrel #rel b pos -> serialize32_bcvli' x b pos | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.Low.Base.leaf_writer_strong LowParse.Spec.BCVLI.serialize_bcvli | Prims.Tot | [
"total"
] | [] | [
"LowParse.Low.Base.leaf_writer_strong_of_serializer32",
"LowParse.Spec.BCVLI.parse_bcvli_kind",
"FStar.UInt32.t",
"LowParse.Spec.BCVLI.parse_bcvli",
"LowParse.Spec.BCVLI.serialize_bcvli",
"LowParse.Low.BCVLI.serialize32_bcvli"
] | [] | false | false | false | true | false | let write_bcvli:leaf_writer_strong serialize_bcvli =
| leaf_writer_strong_of_serializer32 serialize32_bcvli () | false |
FStar.UInt64.fsti | FStar.UInt64.op_Less_Less_Hat | val op_Less_Less_Hat : a: FStar.UInt64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt64.t | let op_Less_Less_Hat = shift_left | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 330,
"start_col": 7,
"start_line": 330
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.shift_left"
] | [] | false | false | false | false | false | let op_Less_Less_Hat =
| shift_left | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Slash_Hat | val op_Slash_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t{FStar.UInt64.v b <> 0} -> Prims.Pure FStar.UInt64.t | let op_Slash_Hat = div | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 325,
"start_col": 7,
"start_line": 325
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t{FStar.UInt64.v b <> 0} -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.div"
] | [] | false | false | false | false | false | let op_Slash_Hat =
| div | false |
|
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.validate_bounded_bcvli | val validate_bounded_bcvli
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max})
(max32: U32.t{U32.v max32 == max})
: Tot (validator (parse_bounded_bcvli min max)) | val validate_bounded_bcvli
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max})
(max32: U32.t{U32.v max32 == max})
: Tot (validator (parse_bounded_bcvli min max)) | let validate_bounded_bcvli
(min: nat)
(min32: U32.t { U32.v min32 == min })
(max: nat { min <= max })
(max32: U32.t { U32.v max32 == max })
: Tot (validator (parse_bounded_bcvli min max))
= validate_bounded_bcvli' min32 max32 | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 37,
"end_line": 241,
"start_col": 0,
"start_line": 235
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1
let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t
#pop-options
module U8 = FStar.UInt8
#push-options "--z3rlimit 32"
inline_for_extraction
let serialize32_bcvli'
(x: U32.t)
(#rrel #rel: _)
(b: B.mbuffer U8.t rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\
U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h
))
(ensures (fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\ (
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\
B.live h b /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` serialize serialize_bcvli x
)))
= // [@inline_let] let _ =
serialize_bcvli_eq x
; // in
let c : bounded_integer 1 =
if x `U32.lt` 253ul
then x
else if x `U32.lt` 65536ul
then 253ul
else 254ul
in
[@inline_let]
let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1) in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@inline_let]
let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then begin
len1
end else if c = 253ul
then begin
[@inline_let]
let _ = assert (U32.v x < 65536) in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 2) in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end else begin
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 4) in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end
inline_for_extraction
let serialize32_bcvli : serializer32 serialize_bcvli =
fun (x: U32.t) #rrel #rel b pos -> serialize32_bcvli' x b pos
let write_bcvli : leaf_writer_strong serialize_bcvli =
leaf_writer_strong_of_serializer32 serialize32_bcvli ()
let validate_bounded_bcvli'
(min32: U32.t)
(max32: U32.t { U32.v min32 <= U32.v max32 })
: Tot (validator (parse_bounded_bcvli (U32.v min32) (U32.v max32)))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_bounded_bcvli (U32.v min32) (U32.v max32)) h input (uint64_to_uint32 pos);
parse_bounded_bcvli_eq (U32.v min32) (U32.v max32) (bytes_of_slice_from h input (uint64_to_uint32 pos));
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul && min32 `U32.lte` r && r `U32.lte` max32
then pos1
else if max32 `U32.lt` 253ul
then validator_error_generic
else if r = 253ul
then
if 65536ul `U32.lte` min32
then validator_error_generic
else
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else if max32 `U32.lt` 65536ul
then validator_error_generic
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else validator_error_generic
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max}
-> LowParse.Low.Base.validator (LowParse.Spec.BCVLI.parse_bounded_bcvli min max) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"Prims.l_and",
"LowParse.Low.BCVLI.validate_bounded_bcvli'",
"LowParse.Low.Base.validator",
"LowParse.Spec.BCVLI.parse_bounded_bcvli_kind",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.BCVLI.parse_bounded_bcvli"
] | [] | false | false | false | false | false | let validate_bounded_bcvli
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max})
(max32: U32.t{U32.v max32 == max})
: Tot (validator (parse_bounded_bcvli min max)) =
| validate_bounded_bcvli' min32 max32 | false |
FStar.UInt64.fsti | FStar.UInt64.op_Hat_Hat | val op_Hat_Hat : x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Hat_Hat = logxor | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 327,
"start_col": 7,
"start_line": 327
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.logxor"
] | [] | false | false | false | false | false | let op_Hat_Hat =
| logxor | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Percent_Hat | val op_Percent_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t{FStar.UInt64.v b <> 0} -> Prims.Pure FStar.UInt64.t | let op_Percent_Hat = rem | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 326,
"start_col": 7,
"start_line": 326
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t{FStar.UInt64.v b <> 0} -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.rem"
] | [] | false | false | false | false | false | let op_Percent_Hat =
| rem | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Amp_Hat | val op_Amp_Hat : x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Amp_Hat = logand | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 328,
"start_col": 7,
"start_line": 328
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.logand"
] | [] | false | false | false | false | false | let op_Amp_Hat =
| logand | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Greater_Greater_Hat | val op_Greater_Greater_Hat : a: FStar.UInt64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt64.t | let op_Greater_Greater_Hat = shift_right | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 331,
"start_col": 7,
"start_line": 331
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.shift_right"
] | [] | false | false | false | false | false | let op_Greater_Greater_Hat =
| shift_right | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Star_Percent_Hat | val op_Star_Percent_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Star_Percent_Hat = mul_mod | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 324,
"start_col": 7,
"start_line": 324
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.mul_mod"
] | [] | false | false | false | false | false | let op_Star_Percent_Hat =
| mul_mod | false |
|
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.jump_bounded_bcvli | val jump_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (jumper (parse_bounded_bcvli min max)) | val jump_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (jumper (parse_bounded_bcvli min max)) | let jump_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (jumper (parse_bounded_bcvli min max))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bounded_bcvli min max) h input pos;
parse_bounded_bcvli_eq min max (bytes_of_slice_from h input pos);
valid_facts parse_bcvli h input pos
in
jump_bcvli input pos | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 24,
"end_line": 257,
"start_col": 0,
"start_line": 245
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1
let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t
#pop-options
module U8 = FStar.UInt8
#push-options "--z3rlimit 32"
inline_for_extraction
let serialize32_bcvli'
(x: U32.t)
(#rrel #rel: _)
(b: B.mbuffer U8.t rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\
U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h
))
(ensures (fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\ (
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\
B.live h b /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` serialize serialize_bcvli x
)))
= // [@inline_let] let _ =
serialize_bcvli_eq x
; // in
let c : bounded_integer 1 =
if x `U32.lt` 253ul
then x
else if x `U32.lt` 65536ul
then 253ul
else 254ul
in
[@inline_let]
let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1) in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@inline_let]
let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then begin
len1
end else if c = 253ul
then begin
[@inline_let]
let _ = assert (U32.v x < 65536) in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 2) in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end else begin
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 4) in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end
inline_for_extraction
let serialize32_bcvli : serializer32 serialize_bcvli =
fun (x: U32.t) #rrel #rel b pos -> serialize32_bcvli' x b pos
let write_bcvli : leaf_writer_strong serialize_bcvli =
leaf_writer_strong_of_serializer32 serialize32_bcvli ()
let validate_bounded_bcvli'
(min32: U32.t)
(max32: U32.t { U32.v min32 <= U32.v max32 })
: Tot (validator (parse_bounded_bcvli (U32.v min32) (U32.v max32)))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_bounded_bcvli (U32.v min32) (U32.v max32)) h input (uint64_to_uint32 pos);
parse_bounded_bcvli_eq (U32.v min32) (U32.v max32) (bytes_of_slice_from h input (uint64_to_uint32 pos));
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul && min32 `U32.lte` r && r `U32.lte` max32
then pos1
else if max32 `U32.lt` 253ul
then validator_error_generic
else if r = 253ul
then
if 65536ul `U32.lte` min32
then validator_error_generic
else
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else if max32 `U32.lt` 65536ul
then validator_error_generic
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else validator_error_generic
inline_for_extraction
noextract
let validate_bounded_bcvli
(min: nat)
(min32: U32.t { U32.v min32 == min })
(max: nat { min <= max })
(max32: U32.t { U32.v max32 == max })
: Tot (validator (parse_bounded_bcvli min max))
= validate_bounded_bcvli' min32 max32
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | min: Prims.nat -> max: Prims.nat{min <= max}
-> LowParse.Low.Base.jumper (LowParse.Spec.BCVLI.parse_bounded_bcvli min max) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"LowParse.Low.BCVLI.jump_bcvli",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.BCVLI.parse_bcvli_kind",
"LowParse.Spec.BCVLI.parse_bcvli",
"LowParse.Spec.BCVLI.parse_bounded_bcvli_eq",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.BCVLI.parse_bounded_bcvli_kind",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.BCVLI.parse_bounded_bcvli",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowParse.Low.Base.jumper"
] | [] | false | false | false | false | false | let jump_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (jumper (parse_bounded_bcvli min max)) =
| fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ =
valid_facts (parse_bounded_bcvli min max) h input pos;
parse_bounded_bcvli_eq min max (bytes_of_slice_from h input pos);
valid_facts parse_bcvli h input pos
in
jump_bcvli input pos | false |
FStar.UInt64.fsti | FStar.UInt64.minus | val minus : a: FStar.UInt64.t -> FStar.UInt64.t | let minus (a:t) = add_mod (lognot a) (uint_to_t 1) | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 239,
"start_col": 0,
"start_line": 239
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> FStar.UInt64.t | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.UInt64.add_mod",
"FStar.UInt64.lognot",
"FStar.UInt64.uint_to_t"
] | [] | false | false | false | true | false | let minus (a: t) =
| add_mod (lognot a) (uint_to_t 1) | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Bar_Hat | val op_Bar_Hat : x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | let op_Bar_Hat = logor | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 329,
"start_col": 7,
"start_line": 329
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt64.t -> y: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.logor"
] | [] | false | false | false | false | false | let op_Bar_Hat =
| logor | false |
|
FStar.UInt64.fsti | FStar.UInt64.n_minus_one | val n_minus_one : FStar.UInt32.t | let n_minus_one = UInt32.uint_to_t (n - 1) | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 244,
"start_col": 0,
"start_line": 244
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.UInt32.t | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt32.uint_to_t",
"Prims.op_Subtraction",
"FStar.UInt64.n"
] | [] | false | false | false | true | false | let n_minus_one =
| UInt32.uint_to_t (n - 1) | false |
|
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.write_bounded_bcvli | val write_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (leaf_writer_strong (serialize_bounded_bcvli min max)) | val write_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (leaf_writer_strong (serialize_bounded_bcvli min max)) | let write_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (leaf_writer_strong (serialize_bounded_bcvli min max))
= leaf_writer_strong_of_serializer32 (serialize32_bounded_bcvli min max) () | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 75,
"end_line": 292,
"start_col": 0,
"start_line": 288
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1
let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t
#pop-options
module U8 = FStar.UInt8
#push-options "--z3rlimit 32"
inline_for_extraction
let serialize32_bcvli'
(x: U32.t)
(#rrel #rel: _)
(b: B.mbuffer U8.t rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\
U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h
))
(ensures (fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\ (
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\
B.live h b /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` serialize serialize_bcvli x
)))
= // [@inline_let] let _ =
serialize_bcvli_eq x
; // in
let c : bounded_integer 1 =
if x `U32.lt` 253ul
then x
else if x `U32.lt` 65536ul
then 253ul
else 254ul
in
[@inline_let]
let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1) in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@inline_let]
let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then begin
len1
end else if c = 253ul
then begin
[@inline_let]
let _ = assert (U32.v x < 65536) in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 2) in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end else begin
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 4) in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end
inline_for_extraction
let serialize32_bcvli : serializer32 serialize_bcvli =
fun (x: U32.t) #rrel #rel b pos -> serialize32_bcvli' x b pos
let write_bcvli : leaf_writer_strong serialize_bcvli =
leaf_writer_strong_of_serializer32 serialize32_bcvli ()
let validate_bounded_bcvli'
(min32: U32.t)
(max32: U32.t { U32.v min32 <= U32.v max32 })
: Tot (validator (parse_bounded_bcvli (U32.v min32) (U32.v max32)))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_bounded_bcvli (U32.v min32) (U32.v max32)) h input (uint64_to_uint32 pos);
parse_bounded_bcvli_eq (U32.v min32) (U32.v max32) (bytes_of_slice_from h input (uint64_to_uint32 pos));
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul && min32 `U32.lte` r && r `U32.lte` max32
then pos1
else if max32 `U32.lt` 253ul
then validator_error_generic
else if r = 253ul
then
if 65536ul `U32.lte` min32
then validator_error_generic
else
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else if max32 `U32.lt` 65536ul
then validator_error_generic
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else validator_error_generic
inline_for_extraction
noextract
let validate_bounded_bcvli
(min: nat)
(min32: U32.t { U32.v min32 == min })
(max: nat { min <= max })
(max32: U32.t { U32.v max32 == max })
: Tot (validator (parse_bounded_bcvli min max))
= validate_bounded_bcvli' min32 max32
inline_for_extraction
noextract
let jump_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (jumper (parse_bounded_bcvli min max))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bounded_bcvli min max) h input pos;
parse_bounded_bcvli_eq min max (bytes_of_slice_from h input pos);
valid_facts parse_bcvli h input pos
in
jump_bcvli input pos
inline_for_extraction
noextract
let read_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (leaf_reader (parse_bounded_bcvli min max))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bounded_bcvli min max) h input pos;
parse_bounded_bcvli_eq min max (bytes_of_slice_from h input pos);
valid_facts parse_bcvli h input pos
in
read_bcvli input pos <: bounded_int32 min max
inline_for_extraction
noextract
let serialize32_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (serializer32 (serialize_bounded_bcvli min max))
= fun (x: bounded_int32 min max) #rrel #rel b pos ->
[@inline_let]
let _ = serialize_bounded_bcvli_eq min max x in
serialize32_bcvli x b pos
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | min: Prims.nat -> max: Prims.nat{min <= max}
-> LowParse.Low.Base.leaf_writer_strong (LowParse.Spec.BCVLI.serialize_bounded_bcvli min max) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Low.Base.leaf_writer_strong_of_serializer32",
"LowParse.Spec.BCVLI.parse_bounded_bcvli_kind",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.BCVLI.parse_bounded_bcvli",
"LowParse.Spec.BCVLI.serialize_bounded_bcvli",
"LowParse.Low.BCVLI.serialize32_bounded_bcvli",
"LowParse.Low.Base.leaf_writer_strong"
] | [] | false | false | false | false | false | let write_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (leaf_writer_strong (serialize_bounded_bcvli min max)) =
| leaf_writer_strong_of_serializer32 (serialize32_bounded_bcvli min max) () | false |
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.serialize32_bcvli | val serialize32_bcvli:serializer32 serialize_bcvli | val serialize32_bcvli:serializer32 serialize_bcvli | let serialize32_bcvli : serializer32 serialize_bcvli =
fun (x: U32.t) #rrel #rel b pos -> serialize32_bcvli' x b pos | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 63,
"end_line": 174,
"start_col": 0,
"start_line": 173
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1
let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t
#pop-options
module U8 = FStar.UInt8
#push-options "--z3rlimit 32"
inline_for_extraction
let serialize32_bcvli'
(x: U32.t)
(#rrel #rel: _)
(b: B.mbuffer U8.t rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\
U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h
))
(ensures (fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\ (
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\
B.live h b /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` serialize serialize_bcvli x
)))
= // [@inline_let] let _ =
serialize_bcvli_eq x
; // in
let c : bounded_integer 1 =
if x `U32.lt` 253ul
then x
else if x `U32.lt` 65536ul
then 253ul
else 254ul
in
[@inline_let]
let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1) in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@inline_let]
let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then begin
len1
end else if c = 253ul
then begin
[@inline_let]
let _ = assert (U32.v x < 65536) in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 2) in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end else begin
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 4) in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.Low.Base.serializer32 LowParse.Spec.BCVLI.serialize_bcvli | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.srel",
"LowParse.Bytes.byte",
"LowStar.Monotonic.Buffer.mbuffer",
"LowParse.Low.BCVLI.serialize32_bcvli'"
] | [] | false | false | false | true | false | let serialize32_bcvli:serializer32 serialize_bcvli =
| fun (x: U32.t) #rrel #rel b pos -> serialize32_bcvli' x b pos | false |
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.serialize32_bounded_bcvli | val serialize32_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (serializer32 (serialize_bounded_bcvli min max)) | val serialize32_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (serializer32 (serialize_bounded_bcvli min max)) | let serialize32_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (serializer32 (serialize_bounded_bcvli min max))
= fun (x: bounded_int32 min max) #rrel #rel b pos ->
[@inline_let]
let _ = serialize_bounded_bcvli_eq min max x in
serialize32_bcvli x b pos | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 29,
"end_line": 284,
"start_col": 0,
"start_line": 277
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1
let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t
#pop-options
module U8 = FStar.UInt8
#push-options "--z3rlimit 32"
inline_for_extraction
let serialize32_bcvli'
(x: U32.t)
(#rrel #rel: _)
(b: B.mbuffer U8.t rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\
U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h
))
(ensures (fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\ (
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\
B.live h b /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` serialize serialize_bcvli x
)))
= // [@inline_let] let _ =
serialize_bcvli_eq x
; // in
let c : bounded_integer 1 =
if x `U32.lt` 253ul
then x
else if x `U32.lt` 65536ul
then 253ul
else 254ul
in
[@inline_let]
let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1) in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@inline_let]
let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then begin
len1
end else if c = 253ul
then begin
[@inline_let]
let _ = assert (U32.v x < 65536) in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 2) in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end else begin
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 4) in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end
inline_for_extraction
let serialize32_bcvli : serializer32 serialize_bcvli =
fun (x: U32.t) #rrel #rel b pos -> serialize32_bcvli' x b pos
let write_bcvli : leaf_writer_strong serialize_bcvli =
leaf_writer_strong_of_serializer32 serialize32_bcvli ()
let validate_bounded_bcvli'
(min32: U32.t)
(max32: U32.t { U32.v min32 <= U32.v max32 })
: Tot (validator (parse_bounded_bcvli (U32.v min32) (U32.v max32)))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_bounded_bcvli (U32.v min32) (U32.v max32)) h input (uint64_to_uint32 pos);
parse_bounded_bcvli_eq (U32.v min32) (U32.v max32) (bytes_of_slice_from h input (uint64_to_uint32 pos));
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul && min32 `U32.lte` r && r `U32.lte` max32
then pos1
else if max32 `U32.lt` 253ul
then validator_error_generic
else if r = 253ul
then
if 65536ul `U32.lte` min32
then validator_error_generic
else
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else if max32 `U32.lt` 65536ul
then validator_error_generic
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else validator_error_generic
inline_for_extraction
noextract
let validate_bounded_bcvli
(min: nat)
(min32: U32.t { U32.v min32 == min })
(max: nat { min <= max })
(max32: U32.t { U32.v max32 == max })
: Tot (validator (parse_bounded_bcvli min max))
= validate_bounded_bcvli' min32 max32
inline_for_extraction
noextract
let jump_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (jumper (parse_bounded_bcvli min max))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bounded_bcvli min max) h input pos;
parse_bounded_bcvli_eq min max (bytes_of_slice_from h input pos);
valid_facts parse_bcvli h input pos
in
jump_bcvli input pos
inline_for_extraction
noextract
let read_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (leaf_reader (parse_bounded_bcvli min max))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bounded_bcvli min max) h input pos;
parse_bounded_bcvli_eq min max (bytes_of_slice_from h input pos);
valid_facts parse_bcvli h input pos
in
read_bcvli input pos <: bounded_int32 min max
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | min: Prims.nat -> max: Prims.nat{min <= max}
-> LowParse.Low.Base.serializer32 (LowParse.Spec.BCVLI.serialize_bounded_bcvli min max) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowStar.Monotonic.Buffer.srel",
"LowParse.Bytes.byte",
"LowStar.Monotonic.Buffer.mbuffer",
"FStar.UInt32.t",
"LowParse.Low.BCVLI.serialize32_bcvli",
"Prims.unit",
"LowParse.Spec.BCVLI.serialize_bounded_bcvli_eq",
"LowParse.Low.Base.serializer32",
"LowParse.Spec.BCVLI.parse_bounded_bcvli_kind",
"LowParse.Spec.BCVLI.parse_bounded_bcvli",
"LowParse.Spec.BCVLI.serialize_bounded_bcvli"
] | [] | false | false | false | false | false | let serialize32_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (serializer32 (serialize_bounded_bcvli min max)) =
| fun (x: bounded_int32 min max) #rrel #rel b pos ->
[@@ inline_let ]let _ = serialize_bounded_bcvli_eq min max x in
serialize32_bcvli x b pos | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hvvreg | val hvvreg (hsz:hash_size_t): regional (regional hash_size_t (hash_vec #hsz)) (hash_vv hsz) | val hvvreg (hsz:hash_size_t): regional (regional hash_size_t (hash_vec #hsz)) (hash_vv hsz) | let hvvreg hsz = RVI.vector_regional (hvreg hsz) | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 48,
"end_line": 322,
"start_col": 0,
"start_line": 322
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract
val hash_vec_repr: #hsz:hash_size_t -> Type0
let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz)
noextract
val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz)
let hash_vec_r_repr #_ h v =
RV.as_seq h v
noextract
val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\
hash_vec_r_repr h0 v == hash_vec_r_repr h1 v))
let hash_vec_r_sep #_ v p h0 h1 =
RV.rv_inv_preserved v p h0 h1;
RV.as_seq_preserved v p h0 h1
noextract
val hash_vec_irepr: #hsz:hash_size_t -> Ghost.erased (hash_vec_repr #hsz)
let hash_vec_irepr #_ = Ghost.hide S.empty
noextract
val hash_vec_r_alloc_p: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_alloc_p #_ v = V.size_of v = 0ul
#push-options "--initial_fuel 1 --max_fuel 1"
val hash_vec_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash_vec #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_vec_r_alloc_p v /\
hash_vec_r_inv h1 v /\
hash_vec_region_of v = r /\
hash_vec_r_repr h1 v == Ghost.reveal hash_vec_irepr /\
B.fresh_loc (V.loc_vector v) h0 h1))
let hash_vec_r_alloc #_ hsz r =
let nrid = HST.new_region r in
// Note: here we are not creating a generic parameterized regional, we are
// creating a specialized regional vector of hashes, so we don't need to go
// through a run-time indirection to figure out what the dummy default element
// is; we know it's the one for hashes
V.alloc_reserve 1ul (hash_dummy #hsz) r
#pop-options
val hash_vec_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash_vec #hsz ->
HST.ST unit
(requires (fun h0 -> hash_vec_r_inv h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_vec_region_of #hsz v)) h0 h1))
let hash_vec_r_free #_ hsz v =
RV.free v
/// This is nice because the only piece of state that we are keeping is one
/// word, the hash size, since we are implementing a specialized instance of
/// RVector over hashes of a known length. We could also, for genericity, make
/// this a mere application of RVector over hreg, which would be less
/// implementation effort, at the expense of a bigger run-time cost since there
/// would be extra space in the struct (which is passed by value!) and also a
/// run-time indirection to do the lookup of the type class instance for the
/// elements of the rvector.
noextract inline_for_extraction
val hvreg (hsz:hash_size_t): regional hash_size_t (hash_vec #hsz)
let hvreg hsz =
Rgl hsz
(hash_vec_region_of #hsz)
V.loc_vector
(hash_vec_dummy #hsz)
(hash_vec_r_inv #hsz)
(hash_vec_r_inv_reg #hsz)
(hash_vec_repr #hsz)
(hash_vec_r_repr #hsz)
(hash_vec_r_sep #hsz)
(hash_vec_irepr #hsz)
(hash_vec_r_alloc_p #hsz)
(hash_vec_r_alloc #hsz)
(hash_vec_r_free #hsz)
/// 3. A vector of hash vectors is also regional
type hash_vv (hsz:hash_size_t) = RV.rvector (hvreg hsz)
noextract inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hsz: MerkleTree.Low.Datastructures.hash_size_t
-> LowStar.Regional.regional (LowStar.Regional.regional MerkleTree.Low.Datastructures.hash_size_t
MerkleTree.Low.Datastructures.hash_vec)
(MerkleTree.Low.Datastructures.hash_vv hsz) | Prims.Tot | [
"total"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"LowStar.Regional.Instances.vector_regional",
"MerkleTree.Low.Datastructures.hash_vec",
"MerkleTree.Low.Datastructures.hvreg",
"LowStar.Regional.regional",
"MerkleTree.Low.Datastructures.hash_vv"
] | [] | false | false | false | false | false | let hvvreg hsz =
| RVI.vector_regional (hvreg hsz) | false |
FStar.UInt64.fsti | FStar.UInt64.op_Less_Equals_Hat | val op_Less_Equals_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | let op_Less_Equals_Hat = lte | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 336,
"start_col": 7,
"start_line": 336
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Equals_Hat = eq
unfold let op_Greater_Hat = gt
unfold let op_Greater_Equals_Hat = gte | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.lte"
] | [] | false | false | false | true | false | let op_Less_Equals_Hat =
| lte | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Equals_Hat | val op_Equals_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | let op_Equals_Hat = eq | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 332,
"start_col": 7,
"start_line": 332
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.eq"
] | [] | false | false | false | true | false | let op_Equals_Hat =
| eq | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Less_Hat | val op_Less_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | let op_Less_Hat = lt | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 335,
"start_col": 7,
"start_line": 335
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Equals_Hat = eq
unfold let op_Greater_Hat = gt | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.lt"
] | [] | false | false | false | true | false | let op_Less_Hat =
| lt | false |
|
FStar.UInt64.fsti | FStar.UInt64.op_Greater_Equals_Hat | val op_Greater_Equals_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | let op_Greater_Equals_Hat = gte | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 334,
"start_col": 7,
"start_line": 334
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Equals_Hat = eq | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.gte"
] | [] | false | false | false | true | false | let op_Greater_Equals_Hat =
| gte | false |
|
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.read_bounded_bcvli | val read_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (leaf_reader (parse_bounded_bcvli min max)) | val read_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (leaf_reader (parse_bounded_bcvli min max)) | let read_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (leaf_reader (parse_bounded_bcvli min max))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bounded_bcvli min max) h input pos;
parse_bounded_bcvli_eq min max (bytes_of_slice_from h input pos);
valid_facts parse_bcvli h input pos
in
read_bcvli input pos <: bounded_int32 min max | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 49,
"end_line": 273,
"start_col": 0,
"start_line": 261
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1
let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t
#pop-options
module U8 = FStar.UInt8
#push-options "--z3rlimit 32"
inline_for_extraction
let serialize32_bcvli'
(x: U32.t)
(#rrel #rel: _)
(b: B.mbuffer U8.t rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\
U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h
))
(ensures (fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\ (
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\
B.live h b /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` serialize serialize_bcvli x
)))
= // [@inline_let] let _ =
serialize_bcvli_eq x
; // in
let c : bounded_integer 1 =
if x `U32.lt` 253ul
then x
else if x `U32.lt` 65536ul
then 253ul
else 254ul
in
[@inline_let]
let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1) in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@inline_let]
let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then begin
len1
end else if c = 253ul
then begin
[@inline_let]
let _ = assert (U32.v x < 65536) in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 2) in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end else begin
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 4) in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end
inline_for_extraction
let serialize32_bcvli : serializer32 serialize_bcvli =
fun (x: U32.t) #rrel #rel b pos -> serialize32_bcvli' x b pos
let write_bcvli : leaf_writer_strong serialize_bcvli =
leaf_writer_strong_of_serializer32 serialize32_bcvli ()
let validate_bounded_bcvli'
(min32: U32.t)
(max32: U32.t { U32.v min32 <= U32.v max32 })
: Tot (validator (parse_bounded_bcvli (U32.v min32) (U32.v max32)))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_bounded_bcvli (U32.v min32) (U32.v max32)) h input (uint64_to_uint32 pos);
parse_bounded_bcvli_eq (U32.v min32) (U32.v max32) (bytes_of_slice_from h input (uint64_to_uint32 pos));
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul && min32 `U32.lte` r && r `U32.lte` max32
then pos1
else if max32 `U32.lt` 253ul
then validator_error_generic
else if r = 253ul
then
if 65536ul `U32.lte` min32
then validator_error_generic
else
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else if max32 `U32.lt` 65536ul
then validator_error_generic
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else validator_error_generic
inline_for_extraction
noextract
let validate_bounded_bcvli
(min: nat)
(min32: U32.t { U32.v min32 == min })
(max: nat { min <= max })
(max32: U32.t { U32.v max32 == max })
: Tot (validator (parse_bounded_bcvli min max))
= validate_bounded_bcvli' min32 max32
inline_for_extraction
noextract
let jump_bounded_bcvli
(min: nat)
(max: nat { min <= max })
: Tot (jumper (parse_bounded_bcvli min max))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bounded_bcvli min max) h input pos;
parse_bounded_bcvli_eq min max (bytes_of_slice_from h input pos);
valid_facts parse_bcvli h input pos
in
jump_bcvli input pos
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | min: Prims.nat -> max: Prims.nat{min <= max}
-> LowParse.Low.Base.leaf_reader (LowParse.Spec.BCVLI.parse_bounded_bcvli min max) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"LowParse.Low.BCVLI.read_bcvli",
"LowParse.Spec.BoundedInt.bounded_int32",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.BCVLI.parse_bcvli_kind",
"LowParse.Spec.BCVLI.parse_bcvli",
"LowParse.Spec.BCVLI.parse_bounded_bcvli_eq",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.BCVLI.parse_bounded_bcvli_kind",
"LowParse.Spec.BCVLI.parse_bounded_bcvli",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowParse.Low.Base.leaf_reader"
] | [] | false | false | false | false | false | let read_bounded_bcvli (min: nat) (max: nat{min <= max})
: Tot (leaf_reader (parse_bounded_bcvli min max)) =
| fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ =
valid_facts (parse_bounded_bcvli min max) h input pos;
parse_bounded_bcvli_eq min max (bytes_of_slice_from h input pos);
valid_facts parse_bcvli h input pos
in
read_bcvli input pos <: bounded_int32 min max | false |
FStar.UInt64.fsti | FStar.UInt64.op_Greater_Hat | val op_Greater_Hat : a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | let op_Greater_Hat = gt | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 333,
"start_col": 7,
"start_line": 333
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.gt"
] | [] | false | false | false | true | false | let op_Greater_Hat =
| gt | false |
|
MerkleTree.New.High.Correct.Rhs.fst | MerkleTree.New.High.Correct.Rhs.construct_rhs_inv_ok | val construct_rhs_inv_ok:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
lv:nat{lv <= 32} ->
i:nat ->
j:nat{j > 0 /\ i <= j /\ j < pow2 (32 - lv)} ->
olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} ->
hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} ->
rhs:hashes #hsz {S.length rhs = 32} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires (mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)))
(ensures (log2c_bound j (32 - lv);
mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
(let crhs = construct_rhs #_ #f lv hs rhs i j acc actd in
mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd)
(S.slice (fst crhs) lv (lv + log2c j)) actd /\
MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd) ==
MTS.HRaw (snd crhs)))) | val construct_rhs_inv_ok:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
lv:nat{lv <= 32} ->
i:nat ->
j:nat{j > 0 /\ i <= j /\ j < pow2 (32 - lv)} ->
olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} ->
hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} ->
rhs:hashes #hsz {S.length rhs = 32} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires (mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)))
(ensures (log2c_bound j (32 - lv);
mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
(let crhs = construct_rhs #_ #f lv hs rhs i j acc actd in
mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd)
(S.slice (fst crhs) lv (lv + log2c j)) actd /\
MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd) ==
MTS.HRaw (snd crhs)))) | let construct_rhs_inv_ok #hsz #f lv i j olds hs rhs acc actd =
log2c_div j; log2c_bound j (32 - lv);
mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs);
mt_hashes_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs);
let crhs = construct_rhs #_ #f lv hs rhs i j acc actd in
let crhsf = construct_rhs_acc #_ #f j
(S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) acc actd in
construct_rhs_acc_consistent #_ #f lv i j olds hs rhs acc actd;
construct_rhs_acc_inv_ok #_ #f j
(S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) acc actd;
rhs_equiv_inv_preserved #_ #f j
(hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd)
(fst crhsf) (S.slice (fst crhs) lv (lv + log2c j)) actd | {
"file_name": "src/MerkleTree.New.High.Correct.Rhs.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 59,
"end_line": 351,
"start_col": 0,
"start_line": 338
} | module MerkleTree.New.High.Correct.Rhs
open FStar.Classical
open FStar.Ghost
open FStar.Seq
module S = FStar.Seq
module MTS = MerkleTree.Spec
open MerkleTree.New.High
open MerkleTree.New.High.Correct.Base
#set-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 0 --max_ifuel 0"
/// Correctness of rightmost hashes
// Another version of `construct_rhs` that recursively
// accumulates rightmost hashes.
val construct_rhs_acc:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
j:nat ->
fhs:hashess #hsz {
S.length fhs = log2c j /\
mt_hashes_lth_inv_log #hsz j fhs} ->
acc:hash #hsz ->
actd:bool ->
GTot (rhs:hashes #hsz {S.length rhs = log2c j} * hash #hsz) (decreases j)
let rec construct_rhs_acc #_ #f j fhs acc actd =
if j = 0 then (S.empty, acc)
else begin
if j % 2 = 0
then (let nrhsh = construct_rhs_acc #_ #f(j / 2) (S.tail fhs) acc actd in
(S.cons hash_init (fst nrhsh), snd nrhsh))
else (let rhd = if actd then acc else hash_init in
let nacc = if actd
then f (S.last (S.head fhs)) acc
else S.last (S.head fhs) in
let nrhsh = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) nacc true in
(S.cons rhd (fst nrhsh), snd nrhsh))
end
#push-options "--initial_ifuel 1 --max_ifuel 1"
val construct_rhs_acc_odd:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
j:nat ->
fhs:hashess #hsz {
S.length fhs = log2c j /\
mt_hashes_lth_inv_log #hsz j fhs} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires (j % 2 <> 0))
(ensures (let rrf = construct_rhs_acc #_ #f j fhs acc actd in
let nacc = if actd
then f (S.last (S.head fhs)) acc
else S.last (S.head fhs) in
let nrrf = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) nacc true in
S.equal (S.tail (fst rrf)) (fst nrrf) /\
snd rrf == snd nrrf))
let construct_rhs_acc_odd #_ #f j fhs acc actd = ()
#pop-options
#push-options "--initial_fuel 2 --max_fuel 2"
val construct_rhs_acc_inv_ok_0:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
fhs:hashess #hsz {
S.length fhs = 1 /\
mt_hashes_lth_inv_log #hsz 1 fhs /\
mt_hashes_inv_log #_ #f 1 fhs} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires True)
(ensures (let crhs = construct_rhs_acc #_ #f 1 fhs acc actd in
mt_rhs_inv #_ #f 1
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd /\
MTS.mt_get_root #_ #f #1
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw #hsz (snd crhs)))
let construct_rhs_acc_inv_ok_0 #_ #f fhs acc actd = ()
#pop-options
#push-options "--z3rlimit 300"
#restart-solver
val construct_rhs_acc_inv_ok:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
j:nat{j > 0} ->
fhs:hashess #hsz {
S.length fhs = log2c j /\
mt_hashes_lth_inv_log #hsz j fhs /\
mt_hashes_inv_log #_ #f j fhs} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires True)
(ensures (let crhs = construct_rhs_acc #_ #f j fhs acc actd in
mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd /\
MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd crhs)))
(decreases j)
let rec construct_rhs_acc_inv_ok #hsz #f j fhs acc actd =
if j = 1 then
construct_rhs_acc_inv_ok_0 #_ #f fhs acc actd
else if j % 2 = 0 then begin
construct_rhs_acc_inv_ok #_ #f (j / 2) (S.tail fhs) acc actd;
let rcrhs = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) acc actd in
assert (mt_rhs_inv #_ #f (j / 2)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) acc actd)
(fst rcrhs) actd);
assert (MTS.mt_get_root #_ #f #(log2c j - 1)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) acc actd) ==
MTS.HRaw (snd rcrhs));
let crhs = (S.cons hash_init (fst rcrhs), snd rcrhs) in
mt_hashes_lth_inv_log_next #_ #f j fhs;
hash_seq_spec_full_even_next #_ #f
j (S.head fhs) (S.head (S.tail fhs)) acc actd;
assert (mt_rhs_inv #_ #f (j / 2)
(MTS.mt_next_lv #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd))
(fst rcrhs) actd);
assert (mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd);
assert (MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd rcrhs))
end
else begin
let rhd = if actd then acc else hash_init #hsz in
let nacc = if actd
then f (S.last (S.head fhs)) acc
else S.last (S.head fhs) in
construct_rhs_acc_inv_ok #_ #f (j / 2) (S.tail fhs) nacc true;
let rcrhs = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) nacc true in
assert (mt_rhs_inv #_ #f (j / 2)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) nacc true)
(fst rcrhs) true);
assert (MTS.mt_get_root #_ #f #(log2c j - 1)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) nacc true) ==
MTS.HRaw (snd rcrhs));
let crhs = (S.cons rhd (fst rcrhs), snd rcrhs) in
mt_hashes_lth_inv_log_next #_ #f j fhs;
hash_seq_spec_full_odd_next #_ #f
j (S.head fhs) (S.head (S.tail fhs)) acc actd nacc;
(if actd then hash_seq_spec_full_case_true #_ #f (S.head fhs) acc);
assert (if actd
then (S.index (hash_seq_spec_full #_ #f (S.head fhs) acc actd) j ==
MTS.HRaw rhd)
else true);
assert (mt_rhs_inv #_ #f (j / 2)
(MTS.mt_next_lv #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd))
(fst rcrhs) true);
assert (mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd);
assert (MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd crhs))
end
#pop-options
val rhs_equiv:
#hsz:pos ->
j:nat ->
rhs1:hashes #hsz {S.length rhs1 = log2c j} ->
rhs2:hashes #hsz {S.length rhs2 = log2c j} ->
actd:bool ->
GTot Type0 (decreases j)
let rec rhs_equiv #hsz j rhs1 rhs2 actd =
if j = 0 then true
else if j % 2 = 0
then rhs_equiv #hsz (j / 2) (S.tail rhs1) (S.tail rhs2) actd
else ((if actd then S.head rhs1 == S.head rhs2 else true) /\
rhs_equiv #hsz (j / 2) (S.tail rhs1) (S.tail rhs2) true)
val rhs_equiv_inv_preserved:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
j:nat ->
smt:MTS.merkle_tree (log2c j) ->
rhs1:hashes #hsz {S.length rhs1 = log2c j} ->
rhs2:hashes #hsz {S.length rhs2 = log2c j} ->
actd:bool ->
Lemma (requires (mt_rhs_inv #_ #f j smt rhs1 actd /\
rhs_equiv #hsz j rhs1 rhs2 actd))
(ensures (mt_rhs_inv #_ #f j smt rhs2 actd))
(decreases j)
let rec rhs_equiv_inv_preserved #_ #f j smt rhs1 rhs2 actd =
if j = 0 then ()
else if j % 2 = 0
then rhs_equiv_inv_preserved #_ #f (j / 2) (MTS.mt_next_lv #_ #f #(log2c j) smt)
(S.tail rhs1) (S.tail rhs2) actd
else begin
(if actd
then (assert (S.index smt j == MTS.HRaw (S.head rhs1));
assert (S.head rhs1 == S.head rhs2))
else ());
rhs_equiv_inv_preserved #_ #f (j / 2) (MTS.mt_next_lv #_ #f #(log2c j) smt)
(S.tail rhs1) (S.tail rhs2) true
end
val construct_rhs_acc_consistent:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
lv:nat{lv <= 32} ->
i:nat ->
j:nat{i <= j /\ j < pow2 (32 - lv)} ->
olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} ->
hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} ->
rhs:hashes #hsz {S.length rhs = 32} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires True)
(ensures
(log2c_bound j (32 - lv);
mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs);
(let rrf = construct_rhs_acc #_ #f j
(S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) acc actd in
let rr = construct_rhs #_ #f lv hs rhs i j acc actd in
rhs_equiv #hsz j (fst rrf) (S.slice (fst rr) lv (lv + log2c j)) actd /\
snd rrf == snd rr)))
(decreases j)
#push-options "--z3rlimit 300 --ifuel 1"
#push-options "--retry 3"
let rec construct_rhs_acc_consistent #hsz #f lv i j olds hs rhs acc actd =
assert (j < pow2 (32 - lv));
assert (j <> 0 ==> j / 2 < pow2 (32 - (lv + 1)));
log2c_bound j (32 - lv);
mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs);
let rrf = construct_rhs_acc #_ #f j
(S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) acc actd in
let rr = construct_rhs #_ #f lv hs rhs i j acc actd in
construct_rhs_unchanged #_ #f lv hs rhs i j acc actd;
assert (S.equal (S.slice rhs 0 lv) (S.slice (fst rr) 0 lv));
if j = 0 then ()
else begin
log2c_div j;
assert (32 - (lv + 1) >= 0);
log2c_bound (j / 2) (32 - (lv + 1));
mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs;
mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) (merge_hs #_ #f olds hs);
if j % 2 = 0 then begin
construct_rhs_acc_consistent #_ #f (lv + 1) (i / 2) (j / 2)
olds hs rhs acc actd;
log2c_bound (j/2) (32 - (lv + 1));
mt_olds_hs_lth_inv_ok #hsz #f (lv+1) (i/2) (j/2) olds hs;
mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs);
let rrf = construct_rhs_acc #_ #f j
(S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) acc actd in
let rr = construct_rhs #_ #f lv hs rhs i j acc actd in
assert (rhs_equiv #hsz j (fst rrf) (S.slice (fst rr) lv (lv + log2c j)) actd);
assert (snd rrf == snd rr)
end
else
begin
let rhd = if actd then acc else hash_init in
let nacc = if actd
then f (S.last (S.index hs lv)) acc
else S.last (S.index hs lv) in
assert (S.equal (S.tail (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)))
(S.slice (merge_hs #_ #f olds hs)
(lv + 1) (lv + 1 + log2c (j / 2))));
// Recursion step for `construct_rhs_acc`
let nrrf = construct_rhs_acc #_ #f (j / 2)
(S.slice (merge_hs #_ #f olds hs) (lv + 1) (lv + 1 + (log2c (j / 2))))
nacc true in
construct_rhs_acc_odd #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) acc actd;
// Recursion step for `construct_rhs`
assert (hs_wf_elts (lv + 1) hs (i / 2) (j / 2));
let nrhs = if actd then S.upd rhs lv acc else rhs in
let nrr = construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true in
construct_rhs_odd #_ #f lv hs rhs i j acc actd;
construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true;
assert (S.equal (S.slice nrhs 0 (lv + 1)) (S.slice (fst nrr) 0 (lv + 1)));
assert (S.index (fst nrr) lv == S.index nrhs lv);
// Recursion for the proof
construct_rhs_acc_consistent #_ #f (lv + 1) (i / 2) (j / 2)
olds hs nrhs nacc true;
assert (rhs_equiv #hsz (j / 2) (fst nrrf)
(S.slice (fst nrr) (lv + 1) (lv + 1 + log2c (j / 2))) true);
assert (snd nrrf == snd nrr);
// All together
(if actd
then (assert (S.head (fst rrf) == rhd);
assert (rhd == acc);
assert (S.index (fst rr) lv == S.index nrhs lv);
assert (S.index nrhs lv == acc);
assert (S.head (fst rrf) == S.index (fst rr) lv))
else ());
assert (if actd then S.head (fst rrf) == S.index (fst rr) lv else true);
assert (rhs_equiv #hsz (j / 2) (S.tail (fst rrf))
(S.slice (fst rr) (lv + 1) (lv + 1 + log2c (j / 2))) true);
assert (rhs_equiv #hsz j (fst rrf) (S.slice (fst rr) lv (lv + log2c j)) actd);
assert (snd rrf == snd rr)
end
end
#pop-options
val construct_rhs_inv_ok:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
lv:nat{lv <= 32} ->
i:nat ->
j:nat{j > 0 /\ i <= j /\ j < pow2 (32 - lv)} ->
olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} ->
hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} ->
rhs:hashes #hsz {S.length rhs = 32} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires (mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)))
(ensures (log2c_bound j (32 - lv);
mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
(let crhs = construct_rhs #_ #f lv hs rhs i j acc actd in
mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd)
(S.slice (fst crhs) lv (lv + log2c j)) actd /\
MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd) == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.Spec.fst.checked",
"MerkleTree.New.High.Correct.Base.fst.checked",
"MerkleTree.New.High.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.New.High.Correct.Rhs.fst"
} | [
{
"abbrev": false,
"full_module": "MerkleTree.New.High.Correct.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.New.High",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.Spec",
"short_module": "MTS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.New.High.Correct",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.New.High.Correct",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
lv: Prims.nat{lv <= 32} ->
i: Prims.nat ->
j: Prims.nat{j > 0 /\ i <= j /\ j < Prims.pow2 (32 - lv)} ->
olds:
MerkleTree.New.High.hashess
{FStar.Seq.Base.length olds = 32 /\ MerkleTree.New.High.Correct.Base.mt_olds_inv lv i olds} ->
hs:
MerkleTree.New.High.hashess
{FStar.Seq.Base.length hs = 32 /\ MerkleTree.New.High.hs_wf_elts lv hs i j} ->
rhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length rhs = 32} ->
acc: MerkleTree.New.High.hash ->
actd: Prims.bool
-> FStar.Pervasives.Lemma
(requires
(MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok lv i j olds hs;
MerkleTree.New.High.Correct.Base.mt_hashes_inv lv
j
(MerkleTree.New.High.Correct.Base.merge_hs olds hs)))
(ensures
(MerkleTree.New.High.Correct.Base.log2c_bound j (32 - lv);
MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok lv i j olds hs;
let crhs = MerkleTree.New.High.construct_rhs lv hs rhs i j acc actd in
MerkleTree.New.High.Correct.Base.mt_rhs_inv j
(MerkleTree.New.High.Correct.Base.hash_seq_spec_full (FStar.Seq.Base.index (MerkleTree.New.High.Correct.Base.merge_hs
olds
hs)
lv)
acc
actd)
(FStar.Seq.Base.slice (FStar.Pervasives.Native.fst crhs)
lv
(lv + MerkleTree.New.High.Correct.Base.log2c j))
actd /\
MerkleTree.Spec.mt_get_root (MerkleTree.New.High.Correct.Base.hash_seq_spec_full (FStar.Seq.Base.index
(MerkleTree.New.High.Correct.Base.merge_hs olds hs)
lv)
acc
actd) ==
MerkleTree.Spec.HRaw (FStar.Pervasives.Native.snd crhs))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"MerkleTree.Spec.hash_fun_t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.l_and",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Subtraction",
"MerkleTree.New.High.hashess",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"MerkleTree.New.High.hashes",
"MerkleTree.New.High.Correct.Base.mt_olds_inv",
"MerkleTree.New.High.hs_wf_elts",
"MerkleTree.New.High.hash",
"Prims.bool",
"MerkleTree.New.High.Correct.Rhs.rhs_equiv_inv_preserved",
"MerkleTree.New.High.Correct.Base.hash_seq_spec_full",
"FStar.Seq.Base.index",
"MerkleTree.New.High.Correct.Base.merge_hs",
"FStar.Pervasives.Native.fst",
"MerkleTree.New.High.Correct.Base.log2c",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.unit",
"MerkleTree.New.High.Correct.Rhs.construct_rhs_acc_inv_ok",
"MerkleTree.New.High.Correct.Rhs.construct_rhs_acc_consistent",
"FStar.Pervasives.Native.tuple2",
"MerkleTree.New.High.Correct.Rhs.construct_rhs_acc",
"MerkleTree.New.High.construct_rhs",
"MerkleTree.New.High.Correct.Base.mt_hashes_inv_log_converted_",
"MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log_converted_",
"MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok",
"MerkleTree.New.High.Correct.Base.log2c_bound",
"MerkleTree.New.High.Correct.Base.log2c_div"
] | [] | true | false | true | false | false | let construct_rhs_inv_ok #hsz #f lv i j olds hs rhs acc actd =
| log2c_div j;
log2c_bound j (32 - lv);
mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs;
mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs);
mt_hashes_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs);
let crhs = construct_rhs #_ #f lv hs rhs i j acc actd in
let crhsf =
construct_rhs_acc #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) acc actd
in
construct_rhs_acc_consistent #_ #f lv i j olds hs rhs acc actd;
construct_rhs_acc_inv_ok #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) acc actd;
rhs_equiv_inv_preserved #_
#f
j
(hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd)
(fst crhsf)
(S.slice (fst crhs) lv (lv + log2c j))
actd | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_r_repr | val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz) | val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz) | let hash_r_repr #_ h v = B.as_seq h v | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 37,
"end_line": 82,
"start_col": 0,
"start_line": 82
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h: FStar.Monotonic.HyperStack.mem ->
v: MerkleTree.Low.Datastructures.hash{MerkleTree.Low.Datastructures.hash_r_inv h v}
-> Prims.GTot MerkleTree.Low.Datastructures.hash_repr | Prims.GTot | [
"sometrivial"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"FStar.Monotonic.HyperStack.mem",
"MerkleTree.Low.Datastructures.hash",
"MerkleTree.Low.Datastructures.hash_r_inv",
"LowStar.Monotonic.Buffer.as_seq",
"Lib.IntTypes.uint8",
"LowStar.Buffer.trivial_preorder",
"MerkleTree.Low.Datastructures.hash_repr"
] | [] | false | false | false | false | false | let hash_r_repr #_ h v =
| B.as_seq h v | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_r_free | val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1) | val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1) | let hash_r_free #_ _ v =
B.free v | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 10,
"end_line": 141,
"start_col": 0,
"start_line": 140
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
hsz: MerkleTree.Low.Datastructures.hash_size_t{hsz == FStar.Ghost.reveal hsz'} ->
v: MerkleTree.Low.Datastructures.hash
-> FStar.HyperStack.ST.ST Prims.unit | FStar.HyperStack.ST.ST | [] | [] | [
"FStar.Ghost.erased",
"MerkleTree.Low.Datastructures.hash_size_t",
"Prims.eq2",
"FStar.Ghost.reveal",
"MerkleTree.Low.Datastructures.hash",
"LowStar.Monotonic.Buffer.free",
"Lib.IntTypes.uint8",
"LowStar.Buffer.trivial_preorder",
"Prims.unit"
] | [] | false | true | false | false | false | let hash_r_free #_ _ v =
| B.free v | false |
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.read_bcvli | val read_bcvli:leaf_reader parse_bcvli | val read_bcvli:leaf_reader parse_bcvli | let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 54,
"end_line": 100,
"start_col": 0,
"start_line": 81
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.Low.Base.leaf_reader LowParse.Spec.BCVLI.parse_bcvli | Prims.Tot | [
"total"
] | [] | [
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"Prims.op_Equality",
"LowParse.Low.BoundedInt.read_bounded_integer_le_2",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Low.BoundedInt.read_bounded_integer_le_4",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.parse_bounded_integer_le",
"LowParse.Low.Base.jump_constant_size",
"LowParse.Low.BoundedInt.read_bounded_integer_le_1",
"LowParse.Spec.BCVLI.parse_bcvli_eq",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.BCVLI.parse_bcvli_kind",
"LowParse.Spec.BCVLI.parse_bcvli",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | false | false | false | true | false | let read_bcvli:leaf_reader parse_bcvli =
| fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@@ inline_let ]let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_repr | val hash_repr (#hsz:hash_size_t): Type0 | val hash_repr (#hsz:hash_size_t): Type0 | let hash_repr #hsz = MTH.hash #(U32.v hsz) | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 42,
"end_line": 77,
"start_col": 0,
"start_line": 77
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"MerkleTree.New.High.hash",
"FStar.UInt32.v"
] | [] | false | false | false | true | true | let hash_repr #hsz =
| MTH.hash #(U32.v hsz) | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_dummy | val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz) | val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz) | let hash_dummy #_ = B.null | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 26,
"end_line": 56,
"start_col": 0,
"start_line": 56
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MerkleTree.Low.Datastructures.hash | Prims.Tot | [
"total"
] | [] | [
"FStar.Ghost.erased",
"MerkleTree.Low.Datastructures.hash_size_t",
"LowStar.Buffer.null",
"Lib.IntTypes.uint8",
"MerkleTree.Low.Datastructures.hash",
"FStar.Ghost.reveal"
] | [] | false | false | false | false | false | let hash_dummy #_ =
| B.null | false |
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.jump_bcvli | val jump_bcvli:jumper parse_bcvli | val jump_bcvli:jumper parse_bcvli | let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1 | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 69,
"end_line": 79,
"start_col": 0,
"start_line": 59
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.Low.Base.jumper LowParse.Spec.BCVLI.parse_bcvli | Prims.Tot | [
"total"
] | [] | [
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"Prims.op_Equality",
"LowParse.Low.Base.jump_constant_size",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer_le",
"LowParse.Low.BoundedInt.read_bounded_integer_le_1",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.BCVLI.parse_bcvli_eq",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.BCVLI.parse_bcvli_kind",
"LowParse.Spec.BCVLI.parse_bcvli",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | false | false | false | true | false | let jump_bcvli:jumper parse_bcvli =
| fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@@ inline_let ]let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else
if r = 253ul
then jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1 | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_r_sep | val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v) | val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v) | let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1 | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 34,
"end_line": 101,
"start_col": 0,
"start_line": 98
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
v: MerkleTree.Low.Datastructures.hash ->
p: LowStar.Monotonic.Buffer.loc ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
MerkleTree.Low.Datastructures.hash_r_inv h0 v /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_all_regions_from false
(MerkleTree.Low.Datastructures.hash_region_of v))
p /\ LowStar.Monotonic.Buffer.modifies p h0 h1)
(ensures
MerkleTree.Low.Datastructures.hash_r_inv h1 v /\
MerkleTree.Low.Datastructures.hash_r_repr h0 v ==
MerkleTree.Low.Datastructures.hash_r_repr h1 v) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"MerkleTree.Low.Datastructures.hash",
"LowStar.Monotonic.Buffer.loc",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.modifies_buffer_elim",
"Lib.IntTypes.uint8",
"LowStar.Buffer.trivial_preorder",
"Prims.unit",
"Prims._assert",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.loc_all_regions_from",
"MerkleTree.Low.Datastructures.hash_region_of",
"LowStar.Monotonic.Buffer.loc_buffer"
] | [] | true | false | true | false | false | let hash_r_sep #_ v p h0 h1 =
| assert (loc_includes (loc_all_regions_from false (hash_region_of v)) (loc_buffer v));
B.modifies_buffer_elim v p h0 h1 | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_irepr | val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz) | val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz) | let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0)) | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 42,
"end_line": 107,
"start_col": 0,
"start_line": 106
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Ghost.erased MerkleTree.Low.Datastructures.hash_repr | Prims.Tot | [
"total"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"FStar.Ghost.hide",
"MerkleTree.Low.Datastructures.hash_repr",
"FStar.Seq.Base.create",
"Lib.IntTypes.uint8",
"FStar.UInt32.v",
"Lib.IntTypes.u8",
"FStar.Ghost.erased"
] | [] | false | false | false | false | false | let hash_irepr #hsz =
| Ghost.hide (S.create (U32.v hsz) (u8 0)) | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hreg | val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz) | val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz) | let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz) | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 24,
"end_line": 158,
"start_col": 0,
"start_line": 145
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hsz: MerkleTree.Low.Datastructures.hash_size_t
-> LowStar.Regional.regional MerkleTree.Low.Datastructures.hash_size_t
MerkleTree.Low.Datastructures.hash | Prims.Tot | [
"total"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"LowStar.Regional.Rgl",
"MerkleTree.Low.Datastructures.hash",
"MerkleTree.Low.Datastructures.hash_region_of",
"LowStar.Monotonic.Buffer.loc_buffer",
"Lib.IntTypes.uint8",
"LowStar.Buffer.trivial_preorder",
"MerkleTree.Low.Datastructures.hash_dummy",
"FStar.Ghost.hide",
"MerkleTree.Low.Datastructures.hash_r_inv",
"MerkleTree.Low.Datastructures.hash_r_inv_reg",
"MerkleTree.Low.Datastructures.hash_repr",
"MerkleTree.Low.Datastructures.hash_r_repr",
"MerkleTree.Low.Datastructures.hash_r_sep",
"MerkleTree.Low.Datastructures.hash_irepr",
"MerkleTree.Low.Datastructures.hash_r_alloc_p",
"MerkleTree.Low.Datastructures.hash_r_alloc",
"MerkleTree.Low.Datastructures.hash_r_free",
"LowStar.Regional.regional"
] | [] | false | false | false | false | false | let hreg hsz =
| Rgl #(hash_size_t)
#(hash #hsz)
hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz) | false |
EverParse3d.InputStream.Buffer.Aux.fst | EverParse3d.InputStream.Buffer.Aux.t | val t : Type0 | let t = input_buffer | {
"file_name": "src/3d/prelude/buffer/EverParse3d.InputStream.Buffer.Aux.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 20,
"end_line": 35,
"start_col": 0,
"start_line": 35
} | module EverParse3d.InputStream.Buffer.Aux
(* This module is here to break circularity in KaRaMeL bundles (because Prims must be in the EverParse bundle because of the string type, as opposed to C,FStar,LowStar.) *)
module IB = EverParse3d.InputBuffer
module IR = EverParse3d.Readable
module LP = LowParse.Low.Base
module B = LowStar.Buffer
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
noeq
type input_buffer = {
len0: Ghost.erased U32.t;
buf: IB.input_buffer_t len0;
perm_of: IR.perm (IB.slice_of buf).LP.base;
len: Ghost.erased U32.t;
pos: B.pointer (Ghost.erased U32.t);
g_all_buf: Ghost.erased (Seq.seq U8.t);
g_all: Ghost.erased (Seq.seq U8.t);
prf: squash (
U32.v len <= U32.v len0 /\
Seq.length g_all == U32.v len /\
B.loc_disjoint (B.loc_buffer (IB.slice_of buf).LP.base `B.loc_union` IR.loc_perm perm_of) (B.loc_buffer pos) /\
Seq.length g_all_buf == U32.v len0 /\
Ghost.reveal g_all == Seq.slice g_all_buf 0 (U32.v len)
);
}
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Base.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverParse3d.Readable.fsti.checked",
"EverParse3d.InputBuffer.fsti.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Buffer.Aux.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowParse.Low.Base",
"short_module": "LP"
},
{
"abbrev": true,
"full_module": "EverParse3d.Readable",
"short_module": "IR"
},
{
"abbrev": true,
"full_module": "EverParse3d.InputBuffer",
"short_module": "IB"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"EverParse3d.InputStream.Buffer.Aux.input_buffer"
] | [] | false | false | false | true | true | let t =
| input_buffer | false |
|
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_repr | val hash_vec_repr: #hsz:hash_size_t -> Type0 | val hash_vec_repr: #hsz:hash_size_t -> Type0 | let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz) | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 48,
"end_line": 223,
"start_col": 0,
"start_line": 223
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"MerkleTree.New.High.hashes",
"FStar.UInt32.v"
] | [] | false | false | false | true | true | let hash_vec_repr #hsz =
| MTH.hashes #(U32.v hsz) | false |
MerkleTree.New.High.Correct.Rhs.fst | MerkleTree.New.High.Correct.Rhs.construct_rhs_acc_inv_ok | val construct_rhs_acc_inv_ok:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
j:nat{j > 0} ->
fhs:hashess #hsz {
S.length fhs = log2c j /\
mt_hashes_lth_inv_log #hsz j fhs /\
mt_hashes_inv_log #_ #f j fhs} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires True)
(ensures (let crhs = construct_rhs_acc #_ #f j fhs acc actd in
mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd /\
MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd crhs)))
(decreases j) | val construct_rhs_acc_inv_ok:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
j:nat{j > 0} ->
fhs:hashess #hsz {
S.length fhs = log2c j /\
mt_hashes_lth_inv_log #hsz j fhs /\
mt_hashes_inv_log #_ #f j fhs} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires True)
(ensures (let crhs = construct_rhs_acc #_ #f j fhs acc actd in
mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd /\
MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd crhs)))
(decreases j) | let rec construct_rhs_acc_inv_ok #hsz #f j fhs acc actd =
if j = 1 then
construct_rhs_acc_inv_ok_0 #_ #f fhs acc actd
else if j % 2 = 0 then begin
construct_rhs_acc_inv_ok #_ #f (j / 2) (S.tail fhs) acc actd;
let rcrhs = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) acc actd in
assert (mt_rhs_inv #_ #f (j / 2)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) acc actd)
(fst rcrhs) actd);
assert (MTS.mt_get_root #_ #f #(log2c j - 1)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) acc actd) ==
MTS.HRaw (snd rcrhs));
let crhs = (S.cons hash_init (fst rcrhs), snd rcrhs) in
mt_hashes_lth_inv_log_next #_ #f j fhs;
hash_seq_spec_full_even_next #_ #f
j (S.head fhs) (S.head (S.tail fhs)) acc actd;
assert (mt_rhs_inv #_ #f (j / 2)
(MTS.mt_next_lv #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd))
(fst rcrhs) actd);
assert (mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd);
assert (MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd rcrhs))
end
else begin
let rhd = if actd then acc else hash_init #hsz in
let nacc = if actd
then f (S.last (S.head fhs)) acc
else S.last (S.head fhs) in
construct_rhs_acc_inv_ok #_ #f (j / 2) (S.tail fhs) nacc true;
let rcrhs = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) nacc true in
assert (mt_rhs_inv #_ #f (j / 2)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) nacc true)
(fst rcrhs) true);
assert (MTS.mt_get_root #_ #f #(log2c j - 1)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) nacc true) ==
MTS.HRaw (snd rcrhs));
let crhs = (S.cons rhd (fst rcrhs), snd rcrhs) in
mt_hashes_lth_inv_log_next #_ #f j fhs;
hash_seq_spec_full_odd_next #_ #f
j (S.head fhs) (S.head (S.tail fhs)) acc actd nacc;
(if actd then hash_seq_spec_full_case_true #_ #f (S.head fhs) acc);
assert (if actd
then (S.index (hash_seq_spec_full #_ #f (S.head fhs) acc actd) j ==
MTS.HRaw rhd)
else true);
assert (mt_rhs_inv #_ #f (j / 2)
(MTS.mt_next_lv #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd))
(fst rcrhs) true);
assert (mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd);
assert (MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd crhs))
end | {
"file_name": "src/MerkleTree.New.High.Correct.Rhs.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 5,
"end_line": 168,
"start_col": 0,
"start_line": 104
} | module MerkleTree.New.High.Correct.Rhs
open FStar.Classical
open FStar.Ghost
open FStar.Seq
module S = FStar.Seq
module MTS = MerkleTree.Spec
open MerkleTree.New.High
open MerkleTree.New.High.Correct.Base
#set-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 0 --max_ifuel 0"
/// Correctness of rightmost hashes
// Another version of `construct_rhs` that recursively
// accumulates rightmost hashes.
val construct_rhs_acc:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
j:nat ->
fhs:hashess #hsz {
S.length fhs = log2c j /\
mt_hashes_lth_inv_log #hsz j fhs} ->
acc:hash #hsz ->
actd:bool ->
GTot (rhs:hashes #hsz {S.length rhs = log2c j} * hash #hsz) (decreases j)
let rec construct_rhs_acc #_ #f j fhs acc actd =
if j = 0 then (S.empty, acc)
else begin
if j % 2 = 0
then (let nrhsh = construct_rhs_acc #_ #f(j / 2) (S.tail fhs) acc actd in
(S.cons hash_init (fst nrhsh), snd nrhsh))
else (let rhd = if actd then acc else hash_init in
let nacc = if actd
then f (S.last (S.head fhs)) acc
else S.last (S.head fhs) in
let nrhsh = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) nacc true in
(S.cons rhd (fst nrhsh), snd nrhsh))
end
#push-options "--initial_ifuel 1 --max_ifuel 1"
val construct_rhs_acc_odd:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
j:nat ->
fhs:hashess #hsz {
S.length fhs = log2c j /\
mt_hashes_lth_inv_log #hsz j fhs} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires (j % 2 <> 0))
(ensures (let rrf = construct_rhs_acc #_ #f j fhs acc actd in
let nacc = if actd
then f (S.last (S.head fhs)) acc
else S.last (S.head fhs) in
let nrrf = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) nacc true in
S.equal (S.tail (fst rrf)) (fst nrrf) /\
snd rrf == snd nrrf))
let construct_rhs_acc_odd #_ #f j fhs acc actd = ()
#pop-options
#push-options "--initial_fuel 2 --max_fuel 2"
val construct_rhs_acc_inv_ok_0:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
fhs:hashess #hsz {
S.length fhs = 1 /\
mt_hashes_lth_inv_log #hsz 1 fhs /\
mt_hashes_inv_log #_ #f 1 fhs} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires True)
(ensures (let crhs = construct_rhs_acc #_ #f 1 fhs acc actd in
mt_rhs_inv #_ #f 1
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd /\
MTS.mt_get_root #_ #f #1
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw #hsz (snd crhs)))
let construct_rhs_acc_inv_ok_0 #_ #f fhs acc actd = ()
#pop-options
#push-options "--z3rlimit 300"
#restart-solver
val construct_rhs_acc_inv_ok:
#hsz:pos -> #f:MTS.hash_fun_t #hsz ->
j:nat{j > 0} ->
fhs:hashess #hsz {
S.length fhs = log2c j /\
mt_hashes_lth_inv_log #hsz j fhs /\
mt_hashes_inv_log #_ #f j fhs} ->
acc:hash #hsz ->
actd:bool ->
Lemma (requires True)
(ensures (let crhs = construct_rhs_acc #_ #f j fhs acc actd in
mt_rhs_inv #_ #f j
(hash_seq_spec_full #_ #f (S.head fhs) acc actd)
(fst crhs) actd /\
MTS.mt_get_root #_ #f #(log2c j)
(hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd crhs))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.Spec.fst.checked",
"MerkleTree.New.High.Correct.Base.fst.checked",
"MerkleTree.New.High.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.New.High.Correct.Rhs.fst"
} | [
{
"abbrev": false,
"full_module": "MerkleTree.New.High.Correct.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.New.High",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.Spec",
"short_module": "MTS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.New.High.Correct",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.New.High.Correct",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
j: Prims.nat{j > 0} ->
fhs:
MerkleTree.New.High.hashess
{ FStar.Seq.Base.length fhs = MerkleTree.New.High.Correct.Base.log2c j /\
MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log j fhs /\
MerkleTree.New.High.Correct.Base.mt_hashes_inv_log j fhs } ->
acc: MerkleTree.New.High.hash ->
actd: Prims.bool
-> FStar.Pervasives.Lemma
(ensures
(let crhs = MerkleTree.New.High.Correct.Rhs.construct_rhs_acc j fhs acc actd in
MerkleTree.New.High.Correct.Base.mt_rhs_inv j
(MerkleTree.New.High.Correct.Base.hash_seq_spec_full (FStar.Seq.Properties.head fhs)
acc
actd)
(FStar.Pervasives.Native.fst crhs)
actd /\
MerkleTree.Spec.mt_get_root (MerkleTree.New.High.Correct.Base.hash_seq_spec_full (FStar.Seq.Properties.head
fhs)
acc
actd) ==
MerkleTree.Spec.HRaw (FStar.Pervasives.Native.snd crhs))) (decreases j) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"MerkleTree.Spec.hash_fun_t",
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"MerkleTree.New.High.hashess",
"Prims.l_and",
"Prims.op_Equality",
"FStar.Seq.Base.length",
"MerkleTree.New.High.hashes",
"MerkleTree.New.High.Correct.Base.log2c",
"MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log",
"MerkleTree.New.High.Correct.Base.mt_hashes_inv_log",
"MerkleTree.New.High.hash",
"Prims.bool",
"Prims.int",
"MerkleTree.New.High.Correct.Rhs.construct_rhs_acc_inv_ok_0",
"Prims.op_Modulus",
"Prims._assert",
"Prims.eq2",
"MerkleTree.Spec.padded_hash",
"MerkleTree.Spec.mt_get_root",
"MerkleTree.New.High.Correct.Base.hash_seq_spec_full",
"FStar.Seq.Properties.head",
"MerkleTree.Spec.HRaw",
"FStar.Pervasives.Native.snd",
"Prims.op_Division",
"Prims.unit",
"MerkleTree.New.High.Correct.Base.mt_rhs_inv",
"FStar.Pervasives.Native.fst",
"MerkleTree.Spec.mt_next_lv",
"MerkleTree.New.High.Correct.Base.hash_seq_spec_full_even_next",
"FStar.Seq.Properties.tail",
"MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log_next",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Seq.Base.cons",
"MerkleTree.New.High.hash_init",
"Prims.op_Subtraction",
"MerkleTree.New.High.Correct.Rhs.construct_rhs_acc",
"MerkleTree.New.High.Correct.Rhs.construct_rhs_acc_inv_ok",
"MerkleTree.Spec.hash",
"FStar.Seq.Base.index",
"MerkleTree.New.High.Correct.Base.hash_seq_spec_full_case_true",
"MerkleTree.New.High.Correct.Base.hash_seq_spec_full_odd_next",
"FStar.Seq.Properties.last",
"Spec.Hash.Definitions.bytes",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.uint8"
] | [
"recursion"
] | false | false | true | false | false | let rec construct_rhs_acc_inv_ok #hsz #f j fhs acc actd =
| if j = 1
then construct_rhs_acc_inv_ok_0 #_ #f fhs acc actd
else
if j % 2 = 0
then
(construct_rhs_acc_inv_ok #_ #f (j / 2) (S.tail fhs) acc actd;
let rcrhs = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) acc actd in
assert (mt_rhs_inv #_
#f
(j / 2)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) acc actd)
(fst rcrhs)
actd);
assert (MTS.mt_get_root #_
#f
#(log2c j - 1)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) acc actd) ==
MTS.HRaw (snd rcrhs));
let crhs = (S.cons hash_init (fst rcrhs), snd rcrhs) in
mt_hashes_lth_inv_log_next #_ #f j fhs;
hash_seq_spec_full_even_next #_ #f j (S.head fhs) (S.head (S.tail fhs)) acc actd;
assert (mt_rhs_inv #_
#f
(j / 2)
(MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.head fhs) acc actd))
(fst rcrhs)
actd);
assert (mt_rhs_inv #_ #f j (hash_seq_spec_full #_ #f (S.head fhs) acc actd) (fst crhs) actd);
assert (MTS.mt_get_root #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd rcrhs)))
else
let rhd = if actd then acc else hash_init #hsz in
let nacc = if actd then f (S.last (S.head fhs)) acc else S.last (S.head fhs) in
construct_rhs_acc_inv_ok #_ #f (j / 2) (S.tail fhs) nacc true;
let rcrhs = construct_rhs_acc #_ #f (j / 2) (S.tail fhs) nacc true in
assert (mt_rhs_inv #_
#f
(j / 2)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) nacc true)
(fst rcrhs)
true);
assert (MTS.mt_get_root #_
#f
#(log2c j - 1)
(hash_seq_spec_full #_ #f (S.head (S.tail fhs)) nacc true) ==
MTS.HRaw (snd rcrhs));
let crhs = (S.cons rhd (fst rcrhs), snd rcrhs) in
mt_hashes_lth_inv_log_next #_ #f j fhs;
hash_seq_spec_full_odd_next #_ #f j (S.head fhs) (S.head (S.tail fhs)) acc actd nacc;
(if actd then hash_seq_spec_full_case_true #_ #f (S.head fhs) acc);
assert (if actd
then (S.index (hash_seq_spec_full #_ #f (S.head fhs) acc actd) j == MTS.HRaw rhd)
else true);
assert (mt_rhs_inv #_
#f
(j / 2)
(MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.head fhs) acc actd))
(fst rcrhs)
true);
assert (mt_rhs_inv #_ #f j (hash_seq_spec_full #_ #f (S.head fhs) acc actd) (fst crhs) actd);
assert (MTS.mt_get_root #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.head fhs) acc actd) ==
MTS.HRaw (snd crhs)) | false |
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.serialize32_bcvli' | val serialize32_bcvli' (x: U32.t) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t)
: HST.Stack U32.t
(requires
(fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\ U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h))
(ensures
(fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\
(B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\
(Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len))
`Seq.equal`
(serialize serialize_bcvli x)))) | val serialize32_bcvli' (x: U32.t) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t)
: HST.Stack U32.t
(requires
(fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\ U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h))
(ensures
(fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\
(B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\
(Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len))
`Seq.equal`
(serialize serialize_bcvli x)))) | let serialize32_bcvli'
(x: U32.t)
(#rrel #rel: _)
(b: B.mbuffer U8.t rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\
U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h
))
(ensures (fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\ (
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\
B.live h b /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` serialize serialize_bcvli x
)))
= // [@inline_let] let _ =
serialize_bcvli_eq x
; // in
let c : bounded_integer 1 =
if x `U32.lt` 253ul
then x
else if x `U32.lt` 65536ul
then 253ul
else 254ul
in
[@inline_let]
let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1) in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@inline_let]
let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then begin
len1
end else if c = 253ul
then begin
[@inline_let]
let _ = assert (U32.v x < 65536) in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 2) in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end else begin
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 4) in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 5,
"end_line": 170,
"start_col": 0,
"start_line": 109
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1
let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t
#pop-options
module U8 = FStar.UInt8
#push-options "--z3rlimit 32" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: FStar.UInt32.t ->
b: LowStar.Monotonic.Buffer.mbuffer FStar.UInt8.t rrel rel ->
pos: FStar.UInt32.t
-> FStar.HyperStack.ST.Stack FStar.UInt32.t | FStar.HyperStack.ST.Stack | [] | [] | [
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.srel",
"FStar.UInt8.t",
"LowStar.Monotonic.Buffer.mbuffer",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"Prims.op_Equality",
"Prims.unit",
"LowStar.Monotonic.Buffer.modifies_buffer_from_to_elim",
"FStar.UInt32.add",
"LowStar.Monotonic.Buffer.loc_buffer_from_to",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowParse.Low.BoundedInt.serialize32_bounded_integer_le_2",
"LowParse.Low.Base.writable_weaken",
"FStar.UInt32.v",
"FStar.Ghost.reveal",
"Prims.nat",
"Prims.op_Addition",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThan",
"LowParse.Low.BoundedInt.serialize32_bounded_integer_le_4",
"LowParse.Low.Base.writable_modifies",
"LowStar.Monotonic.Buffer.loc_none",
"LowParse.Low.BoundedInt.serialize32_bounded_integer_le_1",
"FStar.Ghost.erased",
"FStar.Ghost.hide",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"LowParse.Spec.Base.serialize",
"LowParse.Spec.BCVLI.parse_bcvli_kind",
"LowParse.Spec.BCVLI.parse_bcvli",
"LowParse.Spec.BCVLI.serialize_bcvli",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BCVLI.serialize_bcvli_eq",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.op_LessThanOrEqual",
"LowStar.Monotonic.Buffer.length",
"LowParse.Low.Base.writable",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"LowStar.Monotonic.Buffer.modifies",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.as_seq"
] | [] | false | true | false | false | false | let serialize32_bcvli' (x: U32.t) (#rrel #rel: _) (b: B.mbuffer U8.t rrel rel) (pos: U32.t)
: HST.Stack U32.t
(requires
(fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\ U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h))
(ensures
(fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\
(B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\ B.live h b /\
(Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len))
`Seq.equal`
(serialize serialize_bcvli x)))) =
| serialize_bcvli_eq x;
let c:bounded_integer 1 =
if x `U32.lt` 253ul then x else if x `U32.lt` 65536ul then 253ul else 254ul
in
[@@ inline_let ]let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@@ inline_let ]let _ =
writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1)
in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@@ inline_let ]let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then len1
else
if c = 253ul
then
[@@ inline_let ]let _ = assert (U32.v x < 65536) in
[@@ inline_let ]let _ =
writable_weaken b
(U32.v pos)
(Ghost.reveal pos')
h1
(U32.v pos + U32.v len1)
((U32.v pos + U32.v len1) + 2)
in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@@ inline_let ]let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b
pos
(pos `U32.add` len1)
(B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len))
h1
h';
len
else
[@@ inline_let ]let _ =
writable_weaken b
(U32.v pos)
(Ghost.reveal pos')
h1
(U32.v pos + U32.v len1)
((U32.v pos + U32.v len1) + 4)
in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@@ inline_let ]let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b
pos
(pos `U32.add` len1)
(B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len))
h1
h';
len | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hcpy | val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz) | val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz) | let hcpy hsz =
Cpy (hash_copy #hsz) | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 22,
"end_line": 191,
"start_col": 0,
"start_line": 190
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hsz: MerkleTree.Low.Datastructures.hash_size_t
-> LowStar.RVector.copyable MerkleTree.Low.Datastructures.hash
(MerkleTree.Low.Datastructures.hreg hsz) | Prims.Tot | [
"total"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"LowStar.RVector.Cpy",
"MerkleTree.Low.Datastructures.hash",
"MerkleTree.Low.Datastructures.hreg",
"MerkleTree.Low.Datastructures.hash_copy",
"FStar.Ghost.hide",
"LowStar.RVector.copyable"
] | [] | false | false | false | false | false | let hcpy hsz =
| Cpy (hash_copy #hsz) | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_r_sep | val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\
hash_vec_r_repr h0 v == hash_vec_r_repr h1 v)) | val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\
hash_vec_r_repr h0 v == hash_vec_r_repr h1 v)) | let hash_vec_r_sep #_ v p h0 h1 =
RV.rv_inv_preserved v p h0 h1;
RV.as_seq_preserved v p h0 h1 | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 31,
"end_line": 245,
"start_col": 0,
"start_line": 243
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract
val hash_vec_repr: #hsz:hash_size_t -> Type0
let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz)
noextract
val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz)
let hash_vec_r_repr #_ h v =
RV.as_seq h v
noextract
val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
v: MerkleTree.Low.Datastructures.hash_vec ->
p: LowStar.Monotonic.Buffer.loc ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
MerkleTree.Low.Datastructures.hash_vec_r_inv h0 v /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_all_regions_from false
(MerkleTree.Low.Datastructures.hash_vec_region_of v))
p /\ LowStar.Monotonic.Buffer.modifies p h0 h1)
(ensures
MerkleTree.Low.Datastructures.hash_vec_r_inv h1 v /\
MerkleTree.Low.Datastructures.hash_vec_r_repr h0 v ==
MerkleTree.Low.Datastructures.hash_vec_r_repr h1 v) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"MerkleTree.Low.Datastructures.hash_vec",
"LowStar.Monotonic.Buffer.loc",
"FStar.Monotonic.HyperStack.mem",
"LowStar.RVector.as_seq_preserved",
"MerkleTree.Low.Datastructures.hash",
"MerkleTree.Low.Datastructures.hreg",
"Prims.unit",
"LowStar.RVector.rv_inv_preserved"
] | [] | true | false | true | false | false | let hash_vec_r_sep #_ v p h0 h1 =
| RV.rv_inv_preserved v p h0 h1;
RV.as_seq_preserved v p h0 h1 | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_r_repr | val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz) | val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz) | let hash_vec_r_repr #_ h v =
RV.as_seq h v | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 15,
"end_line": 230,
"start_col": 0,
"start_line": 229
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract
val hash_vec_repr: #hsz:hash_size_t -> Type0
let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz)
noextract
val hash_vec_r_repr:
#hsz:hash_size_t -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h: FStar.Monotonic.HyperStack.mem ->
v: MerkleTree.Low.Datastructures.hash_vec{MerkleTree.Low.Datastructures.hash_vec_r_inv h v}
-> Prims.GTot MerkleTree.Low.Datastructures.hash_vec_repr | Prims.GTot | [
"sometrivial"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"FStar.Monotonic.HyperStack.mem",
"MerkleTree.Low.Datastructures.hash_vec",
"MerkleTree.Low.Datastructures.hash_vec_r_inv",
"LowStar.RVector.as_seq",
"MerkleTree.Low.Datastructures.hash",
"MerkleTree.Low.Datastructures.hreg",
"MerkleTree.Low.Datastructures.hash_vec_repr"
] | [] | false | false | false | false | false | let hash_vec_r_repr #_ h v =
| RV.as_seq h v | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_r_alloc | val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1)) | val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1)) | let hash_r_alloc #_ s r =
B.malloc r (u8 0) s | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 21,
"end_line": 130,
"start_col": 0,
"start_line": 129
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
hsz: MerkleTree.Low.Datastructures.hash_size_t{hsz == FStar.Ghost.reveal hsz'} ->
r: FStar.HyperStack.ST.erid
-> FStar.HyperStack.ST.ST MerkleTree.Low.Datastructures.hash | FStar.HyperStack.ST.ST | [] | [] | [
"FStar.Ghost.erased",
"MerkleTree.Low.Datastructures.hash_size_t",
"Prims.eq2",
"FStar.Ghost.reveal",
"FStar.HyperStack.ST.erid",
"LowStar.Buffer.malloc",
"Lib.IntTypes.uint8",
"Lib.IntTypes.u8",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.freeable",
"MerkleTree.Low.Datastructures.hash"
] | [] | false | true | false | false | false | let hash_r_alloc #_ s r =
| B.malloc r (u8 0) s | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_r_free | val hash_vec_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash_vec #hsz ->
HST.ST unit
(requires (fun h0 -> hash_vec_r_inv h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_vec_region_of #hsz v)) h0 h1)) | val hash_vec_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash_vec #hsz ->
HST.ST unit
(requires (fun h0 -> hash_vec_r_inv h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_vec_region_of #hsz v)) h0 h1)) | let hash_vec_r_free #_ hsz v =
RV.free v | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 11,
"end_line": 289,
"start_col": 0,
"start_line": 288
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract
val hash_vec_repr: #hsz:hash_size_t -> Type0
let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz)
noextract
val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz)
let hash_vec_r_repr #_ h v =
RV.as_seq h v
noextract
val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\
hash_vec_r_repr h0 v == hash_vec_r_repr h1 v))
let hash_vec_r_sep #_ v p h0 h1 =
RV.rv_inv_preserved v p h0 h1;
RV.as_seq_preserved v p h0 h1
noextract
val hash_vec_irepr: #hsz:hash_size_t -> Ghost.erased (hash_vec_repr #hsz)
let hash_vec_irepr #_ = Ghost.hide S.empty
noextract
val hash_vec_r_alloc_p: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_alloc_p #_ v = V.size_of v = 0ul
#push-options "--initial_fuel 1 --max_fuel 1"
val hash_vec_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash_vec #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_vec_r_alloc_p v /\
hash_vec_r_inv h1 v /\
hash_vec_region_of v = r /\
hash_vec_r_repr h1 v == Ghost.reveal hash_vec_irepr /\
B.fresh_loc (V.loc_vector v) h0 h1))
let hash_vec_r_alloc #_ hsz r =
let nrid = HST.new_region r in
// Note: here we are not creating a generic parameterized regional, we are
// creating a specialized regional vector of hashes, so we don't need to go
// through a run-time indirection to figure out what the dummy default element
// is; we know it's the one for hashes
V.alloc_reserve 1ul (hash_dummy #hsz) r
#pop-options
val hash_vec_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash_vec #hsz ->
HST.ST unit
(requires (fun h0 -> hash_vec_r_inv h0 v))
(ensures (fun h0 _ h1 -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
hsz: MerkleTree.Low.Datastructures.hash_size_t{hsz == FStar.Ghost.reveal hsz'} ->
v: MerkleTree.Low.Datastructures.hash_vec
-> FStar.HyperStack.ST.ST Prims.unit | FStar.HyperStack.ST.ST | [] | [] | [
"FStar.Ghost.erased",
"MerkleTree.Low.Datastructures.hash_size_t",
"Prims.eq2",
"FStar.Ghost.reveal",
"MerkleTree.Low.Datastructures.hash_vec",
"LowStar.RVector.free",
"MerkleTree.Low.Datastructures.hash",
"MerkleTree.Low.Datastructures.hreg",
"Prims.unit"
] | [] | false | true | false | false | false | let hash_vec_r_free #_ hsz v =
| RV.free v | false |
Vale.AES.X64.GCMdecryptOpt.fsti | Vale.AES.X64.GCMdecryptOpt.va_req_Gcm_blocks_decrypt_stdcall | val va_req_Gcm_blocks_decrypt_stdcall
(va_b0: va_code)
(va_s0: va_state)
(win: bool)
(alg: algorithm)
(auth_b: buffer128)
(auth_bytes auth_num: nat64)
(keys_b iv_b: buffer128)
(iv: supported_iv_LE)
(hkeys_b abytes_b in128x6_b out128x6_b: buffer128)
(len128x6_num: nat64)
(in128_b out128_b: buffer128)
(len128_num: nat64)
(inout_b: buffer128)
(cipher_num: nat64)
(scratch_b tag_b: buffer128)
(key: (seq nat32))
: prop | val va_req_Gcm_blocks_decrypt_stdcall
(va_b0: va_code)
(va_s0: va_state)
(win: bool)
(alg: algorithm)
(auth_b: buffer128)
(auth_bytes auth_num: nat64)
(keys_b iv_b: buffer128)
(iv: supported_iv_LE)
(hkeys_b abytes_b in128x6_b out128x6_b: buffer128)
(len128x6_num: nat64)
(in128_b out128_b: buffer128)
(len128_num: nat64)
(inout_b: buffer128)
(cipher_num: nat64)
(scratch_b tag_b: buffer128)
(key: (seq nat32))
: prop | let va_req_Gcm_blocks_decrypt_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm)
(auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128)
(iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128)
(out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128)
(len128_num:nat64) (inout_b:buffer128) (cipher_num:nat64) (scratch_b:buffer128) (tag_b:buffer128)
(key:(seq nat32)) : prop =
(va_require_total va_b0 (va_code_Gcm_blocks_decrypt_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\
(let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0
else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) =
(if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let
(auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else
va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0
18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 +
32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0
18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 +
32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range
0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0
+ 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8
+ 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in
let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let
(len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64
(va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64
(va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0
18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 +
40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 +
32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in
let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64
(va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64
(va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0
18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 +
40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 +
56) (va_get_stack va_s0)) in let (cipher_num_bytes:(va_int_range 0 18446744073709551615)) = (if
win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in
let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let
(tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64
(va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64
(va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in sse_enabled /\ movbe_enabled /\
va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\
Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)
Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
(win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack
va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64
(va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\
auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 ==
len128_num /\ cipher_num_bytes == cipher_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem
va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\
Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout
va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1
(va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0)
in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6
(va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0)
in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout
va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9
(va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip
hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem
va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128
tag_b ([auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b])
/\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b;
in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128
scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b;
hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b;
out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b;
abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\
Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b;
inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b;
in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b;
hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b
([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\
(Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\
(Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16
`op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\
out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 <
pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b ==
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length
#Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128
in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b ==
len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\
cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\
Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64
/\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 6) /\ 12 + len128x6 + 6 <
pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8)
<= cipher_num_bytes /\ cipher_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) +
va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128
`op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division`
8) + 128 `op_Division` 8) /\ aes_reqs alg key (Vale.X64.Decls.buffer128_as_seq (va_get_mem
va_s0) keys_b) keys_b keys_ptr (va_get_mem va_s0) (va_get_mem_layout va_s0) /\
pclmulqdq_enabled /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0)
hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE =
Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0)
in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE ==
Vale.AES.GCM_s.compute_iv_BE h_LE iv))) | {
"file_name": "obj/Vale.AES.X64.GCMdecryptOpt.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 203,
"start_col": 0,
"start_line": 63
} | module Vale.AES.X64.GCMdecryptOpt
open Vale.Def.Prop_s
open Vale.Def.Opaque_s
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCTR
open Vale.AES.GCM
open Vale.AES.GHash_s
open Vale.AES.GHash
open Vale.AES.GCM_s
open Vale.AES.X64.AES
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.Poly1305.Math
open Vale.AES.GCM_helpers
open Vale.AES.X64.GHash
open Vale.AES.X64.GCTR
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.InsStack
open Vale.X64.InsAes
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.AES.X64.GF128_Mul
open Vale.X64.Stack
open Vale.X64.CPU_Features_s
open Vale.Math.Poly2.Bits_s
open Vale.AES.X64.AESopt
open Vale.AES.X64.AESGCM
open Vale.AES.X64.AESopt2
open Vale.Lib.Meta
open Vale.AES.X64.GCMencryptOpt
open Vale.AES.OptPublic
let aes_reqs
(alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128)
(key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0
=
aesni_enabled /\ avx_enabled /\
(alg = AES_128 \/ alg = AES_256) /\
is_aes_key_LE alg key /\
length(round_keys) == nr(alg) + 1 /\
round_keys == key_to_round_keys_LE alg key /\
validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\
s128 heap0 keys_b == round_keys
#reset-options "--z3rlimit 100 --max_ifuel 0"
//-- Gcm_blocks_decrypt_stdcall
val va_code_Gcm_blocks_decrypt_stdcall : win:bool -> alg:algorithm -> Tot va_code | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Stack.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsStack.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.InsAes.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Poly1305.Math.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Lib.Meta.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.X64.GHash.fsti.checked",
"Vale.AES.X64.GF128_Mul.fsti.checked",
"Vale.AES.X64.GCTR.fsti.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.X64.AESopt2.fsti.checked",
"Vale.AES.X64.AESopt.fsti.checked",
"Vale.AES.X64.AESGCM.fsti.checked",
"Vale.AES.X64.AES.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash_s.fst.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCTR.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.GCM.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"Vale.AES.AES_common_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.X64.GCMdecryptOpt.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Lib.Basic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESopt2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESGCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESopt",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Poly1305.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESopt2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESGCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AESopt",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Poly1305.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
win: Prims.bool ->
alg: Vale.AES.AES_common_s.algorithm ->
auth_b: Vale.X64.Memory.buffer128 ->
auth_bytes: Vale.X64.Memory.nat64 ->
auth_num: Vale.X64.Memory.nat64 ->
keys_b: Vale.X64.Memory.buffer128 ->
iv_b: Vale.X64.Memory.buffer128 ->
iv: Vale.AES.GCM_s.supported_iv_LE ->
hkeys_b: Vale.X64.Memory.buffer128 ->
abytes_b: Vale.X64.Memory.buffer128 ->
in128x6_b: Vale.X64.Memory.buffer128 ->
out128x6_b: Vale.X64.Memory.buffer128 ->
len128x6_num: Vale.X64.Memory.nat64 ->
in128_b: Vale.X64.Memory.buffer128 ->
out128_b: Vale.X64.Memory.buffer128 ->
len128_num: Vale.X64.Memory.nat64 ->
inout_b: Vale.X64.Memory.buffer128 ->
cipher_num: Vale.X64.Memory.nat64 ->
scratch_b: Vale.X64.Memory.buffer128 ->
tag_b: Vale.X64.Memory.buffer128 ->
key: FStar.Seq.Base.seq Vale.X64.Memory.nat32
-> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Prims.bool",
"Vale.AES.AES_common_s.algorithm",
"Vale.X64.Memory.buffer128",
"Vale.X64.Memory.nat64",
"Vale.AES.GCM_s.supported_iv_LE",
"FStar.Seq.Base.seq",
"Vale.X64.Memory.nat32",
"Prims.l_and",
"Vale.X64.Decls.va_require_total",
"Vale.AES.X64.GCMdecryptOpt.va_code_Gcm_blocks_decrypt_stdcall",
"Prims.b2t",
"Vale.X64.Decls.va_get_ok",
"Vale.X64.CPU_Features_s.sse_enabled",
"Vale.X64.CPU_Features_s.movbe_enabled",
"Prims.eq2",
"Vale.Def.Words_s.nat64",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.Stack_i.init_rsp",
"Vale.X64.Decls.va_get_stack",
"Vale.X64.Memory.is_initial_heap",
"Vale.X64.Decls.va_get_mem_layout",
"Vale.X64.Decls.va_get_mem",
"Prims.l_imp",
"Prims.l_not",
"Vale.X64.Stack_i.valid_stack_slot64",
"Prims.op_Addition",
"Vale.Arch.HeapTypes_s.Public",
"Vale.X64.Decls.va_get_stackTaint",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_64",
"Prims.op_LessThanOrEqual",
"Vale.X64.Decls.validSrcAddrs128",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Decls.validDstAddrs128",
"Vale.X64.Decls.buffer_disjoints128",
"Prims.Cons",
"Prims.Nil",
"Vale.X64.Decls.buffers_disjoint128",
"Prims.op_Multiply",
"Vale.X64.Machine_s.pow2_64",
"Vale.X64.Decls.buffer_length",
"Vale.X64.Memory.vuint128",
"Prims.nat",
"Vale.X64.Machine_s.pow2_32",
"Vale.X64.Memory.buffer_addr",
"Prims.op_Modulus",
"Prims.op_GreaterThan",
"Vale.X64.Decls.va_mul_nat",
"Prims.op_Division",
"Vale.AES.X64.GCMdecryptOpt.aes_reqs",
"Vale.X64.Decls.buffer128_as_seq",
"Vale.X64.CPU_Features_s.pclmulqdq_enabled",
"Vale.AES.OptPublic.hkeys_reqs_pub",
"Vale.X64.Decls.s128",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Types_s.quad32",
"Vale.AES.GCM_s.compute_iv_BE",
"Vale.X64.Decls.buffer128_read",
"Vale.X64.Decls.va_int_range",
"Vale.X64.Stack_i.load_stack64",
"Vale.X64.Machine_s.rR9",
"Vale.X64.Machine_s.rR8",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Machine_s.rRdx",
"Vale.X64.Machine_s.rRsi",
"Vale.X64.Machine_s.rRdi",
"Prims.prop"
] | [] | false | false | false | true | true | let va_req_Gcm_blocks_decrypt_stdcall
(va_b0: va_code)
(va_s0: va_state)
(win: bool)
(alg: algorithm)
(auth_b: buffer128)
(auth_bytes auth_num: nat64)
(keys_b iv_b: buffer128)
(iv: supported_iv_LE)
(hkeys_b abytes_b in128x6_b out128x6_b: buffer128)
(len128x6_num: nat64)
(in128_b out128_b: buffer128)
(len128_num: nat64)
(inout_b: buffer128)
(cipher_num: nat64)
(scratch_b tag_b: buffer128)
(key: (seq nat32))
: prop =
| (va_require_total va_b0 (va_code_Gcm_blocks_decrypt_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\
(let auth_ptr:(va_int_range 0 18446744073709551615) =
(if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0)
in
let auth_num_bytes:(va_int_range 0 18446744073709551615) =
(if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0)
in
let auth_len:(va_int_range 0 18446744073709551615) =
(if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0)
in
let keys_ptr:(va_int_range 0 18446744073709551615) =
(if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0)
in
let iv_ptr:(va_int_range 0 18446744073709551615) =
(if win
then
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)
else va_get_reg64 rR8 va_s0)
in
let xip:(va_int_range 0 18446744073709551615) =
(if win
then
Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)
else va_get_reg64 rR9 va_s0)
in
let abytes_ptr:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0))
in
let in128x6_ptr:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0))
in
let out128x6_ptr:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0))
in
let len128x6:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0))
in
let in128_ptr:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0))
in
let out128_ptr:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0))
in
let len128:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0))
in
let inout_ptr:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0))
in
let cipher_num_bytes:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0))
in
let scratch_ptr:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0))
in
let tag_ptr:(va_int_range 0 18446744073709551615) =
(if win
then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)
else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0))
in
sse_enabled /\ movbe_enabled /\
va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\
Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(~win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\
(win ==>
Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96)
(va_get_stack va_s0)
Public
(va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\
len128x6 == len128x6_num /\ len128 == len128_num /\ cipher_num_bytes == cipher_num /\
Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0)
auth_ptr
auth_b
auth_len
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0)
abytes_ptr
abytes_b
1
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0)
iv_ptr
iv_b
1
(va_get_mem_layout va_s0)
Public /\
Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0)
in128x6_ptr
in128x6_b
len128x6
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0)
out128x6_ptr
out128x6_b
len128x6
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0)
in128_ptr
in128_b
len128
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0)
out128_ptr
out128_b
len128
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0)
inout_ptr
inout_b
1
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0)
scratch_ptr
scratch_b
9
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0)
xip
hkeys_b
8
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0)
tag_ptr
tag_b
1
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.buffer_disjoints128 tag_b
([auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b]) /\
Vale.X64.Decls.buffer_disjoints128 iv_b
([
keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b;
hkeys_b
]) /\
Vale.X64.Decls.buffer_disjoints128 scratch_b
([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\
Vale.X64.Decls.buffer_disjoints128 inout_b
([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\
Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\
Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\
Vale.X64.Decls.buffer_disjoints128 out128x6_b
([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\
Vale.X64.Decls.buffer_disjoints128 in128x6_b
([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\
Vale.X64.Decls.buffer_disjoints128 out128_b
([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\
Vale.X64.Decls.buffer_disjoints128 in128_b
([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\
(Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\
(Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\
auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\
in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\
out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\
in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\
inout_ptr + 16 < pow2_64 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b ==
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b ==
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\
Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\
cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\
Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\
len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 6) /\ 12 + len128x6 + 6 < pow2_32 /\
(va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <=
cipher_num_bytes /\
cipher_num_bytes <
va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) +
128
`op_Division`
8) /\
(va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\
auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\
aes_reqs alg
key
(Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b)
keys_b
keys_ptr
(va_get_mem va_s0)
(va_get_mem_layout va_s0) /\ pclmulqdq_enabled /\
Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b)
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg
key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\
(let h_LE =
Vale.AES.AES_s.aes_encrypt_LE alg
key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0)
in
let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in
iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv))) | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_irepr | val hash_vec_irepr: #hsz:hash_size_t -> Ghost.erased (hash_vec_repr #hsz) | val hash_vec_irepr: #hsz:hash_size_t -> Ghost.erased (hash_vec_repr #hsz) | let hash_vec_irepr #_ = Ghost.hide S.empty | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 42,
"end_line": 249,
"start_col": 0,
"start_line": 249
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract
val hash_vec_repr: #hsz:hash_size_t -> Type0
let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz)
noextract
val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz)
let hash_vec_r_repr #_ h v =
RV.as_seq h v
noextract
val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\
hash_vec_r_repr h0 v == hash_vec_r_repr h1 v))
let hash_vec_r_sep #_ v p h0 h1 =
RV.rv_inv_preserved v p h0 h1;
RV.as_seq_preserved v p h0 h1
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.Ghost.erased MerkleTree.Low.Datastructures.hash_vec_repr | Prims.Tot | [
"total"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"FStar.Ghost.hide",
"MerkleTree.Low.Datastructures.hash_vec_repr",
"FStar.Seq.Base.empty",
"MerkleTree.New.High.hash",
"FStar.UInt32.v",
"FStar.Ghost.erased"
] | [] | false | false | false | false | false | let hash_vec_irepr #_ =
| Ghost.hide S.empty | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hvreg | val hvreg (hsz:hash_size_t): regional hash_size_t (hash_vec #hsz) | val hvreg (hsz:hash_size_t): regional hash_size_t (hash_vec #hsz) | let hvreg hsz =
Rgl hsz
(hash_vec_region_of #hsz)
V.loc_vector
(hash_vec_dummy #hsz)
(hash_vec_r_inv #hsz)
(hash_vec_r_inv_reg #hsz)
(hash_vec_repr #hsz)
(hash_vec_r_repr #hsz)
(hash_vec_r_sep #hsz)
(hash_vec_irepr #hsz)
(hash_vec_r_alloc_p #hsz)
(hash_vec_r_alloc #hsz)
(hash_vec_r_free #hsz) | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 28,
"end_line": 314,
"start_col": 0,
"start_line": 301
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract
val hash_vec_repr: #hsz:hash_size_t -> Type0
let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz)
noextract
val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz)
let hash_vec_r_repr #_ h v =
RV.as_seq h v
noextract
val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\
hash_vec_r_repr h0 v == hash_vec_r_repr h1 v))
let hash_vec_r_sep #_ v p h0 h1 =
RV.rv_inv_preserved v p h0 h1;
RV.as_seq_preserved v p h0 h1
noextract
val hash_vec_irepr: #hsz:hash_size_t -> Ghost.erased (hash_vec_repr #hsz)
let hash_vec_irepr #_ = Ghost.hide S.empty
noextract
val hash_vec_r_alloc_p: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_alloc_p #_ v = V.size_of v = 0ul
#push-options "--initial_fuel 1 --max_fuel 1"
val hash_vec_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash_vec #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_vec_r_alloc_p v /\
hash_vec_r_inv h1 v /\
hash_vec_region_of v = r /\
hash_vec_r_repr h1 v == Ghost.reveal hash_vec_irepr /\
B.fresh_loc (V.loc_vector v) h0 h1))
let hash_vec_r_alloc #_ hsz r =
let nrid = HST.new_region r in
// Note: here we are not creating a generic parameterized regional, we are
// creating a specialized regional vector of hashes, so we don't need to go
// through a run-time indirection to figure out what the dummy default element
// is; we know it's the one for hashes
V.alloc_reserve 1ul (hash_dummy #hsz) r
#pop-options
val hash_vec_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash_vec #hsz ->
HST.ST unit
(requires (fun h0 -> hash_vec_r_inv h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_vec_region_of #hsz v)) h0 h1))
let hash_vec_r_free #_ hsz v =
RV.free v
/// This is nice because the only piece of state that we are keeping is one
/// word, the hash size, since we are implementing a specialized instance of
/// RVector over hashes of a known length. We could also, for genericity, make
/// this a mere application of RVector over hreg, which would be less
/// implementation effort, at the expense of a bigger run-time cost since there
/// would be extra space in the struct (which is passed by value!) and also a
/// run-time indirection to do the lookup of the type class instance for the
/// elements of the rvector.
noextract inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hsz: MerkleTree.Low.Datastructures.hash_size_t
-> LowStar.Regional.regional MerkleTree.Low.Datastructures.hash_size_t
MerkleTree.Low.Datastructures.hash_vec | Prims.Tot | [
"total"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"LowStar.Regional.Rgl",
"MerkleTree.Low.Datastructures.hash_vec",
"MerkleTree.Low.Datastructures.hash_vec_region_of",
"LowStar.Vector.loc_vector",
"MerkleTree.Low.Datastructures.hash",
"MerkleTree.Low.Datastructures.hash_vec_dummy",
"FStar.Ghost.hide",
"MerkleTree.Low.Datastructures.hash_vec_r_inv",
"MerkleTree.Low.Datastructures.hash_vec_r_inv_reg",
"MerkleTree.Low.Datastructures.hash_vec_repr",
"MerkleTree.Low.Datastructures.hash_vec_r_repr",
"MerkleTree.Low.Datastructures.hash_vec_r_sep",
"MerkleTree.Low.Datastructures.hash_vec_irepr",
"MerkleTree.Low.Datastructures.hash_vec_r_alloc_p",
"MerkleTree.Low.Datastructures.hash_vec_r_alloc",
"MerkleTree.Low.Datastructures.hash_vec_r_free",
"LowStar.Regional.regional"
] | [] | false | false | false | false | false | let hvreg hsz =
| Rgl hsz
(hash_vec_region_of #hsz)
V.loc_vector
(hash_vec_dummy #hsz)
(hash_vec_r_inv #hsz)
(hash_vec_r_inv_reg #hsz)
(hash_vec_repr #hsz)
(hash_vec_r_repr #hsz)
(hash_vec_r_sep #hsz)
(hash_vec_irepr #hsz)
(hash_vec_r_alloc_p #hsz)
(hash_vec_r_alloc #hsz)
(hash_vec_r_free #hsz) | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_copy | val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src) | val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src) | let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 26,
"end_line": 174,
"start_col": 0,
"start_line": 173
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: MerkleTree.Low.Datastructures.hash_size_t{s == FStar.Ghost.reveal s'} ->
src: MerkleTree.Low.Datastructures.hash ->
dst: MerkleTree.Low.Datastructures.hash
-> FStar.HyperStack.ST.ST Prims.unit | FStar.HyperStack.ST.ST | [] | [] | [
"FStar.Ghost.erased",
"MerkleTree.Low.Datastructures.hash_size_t",
"Prims.eq2",
"FStar.Ghost.reveal",
"MerkleTree.Low.Datastructures.hash",
"LowStar.Monotonic.Buffer.blit",
"Lib.IntTypes.uint8",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.__uint_to_t",
"Prims.unit"
] | [] | false | true | false | false | false | let hash_copy #_ s src dst =
| B.blit src 0ul dst 0ul s | false |
C.fst | C._zero_for_deref | val _zero_for_deref:FStar.UInt32.t | val _zero_for_deref:FStar.UInt32.t | let _zero_for_deref : FStar.UInt32.t = 0ul | {
"file_name": "krmllib/C.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 42,
"end_line": 65,
"start_col": 0,
"start_line": 65
} | module C
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module U8 = FStar.UInt8
// This module contains a series of bindings that already exist in C. It receives
// a special treatment in Karamel (no prefixes, no .c/.h generated).
// - If a value already exists (e.g. char or srand), then it is defined via the
// default #includes.
// - If a value doesn't exist, it is defined in krmllib.h and implemented in
// krmllib.c (e.g. exit_success, instead of EXIT_SUCCESS).
// The C standard library
assume val srand: UInt32.t -> Stack unit
(requires (fun _ -> true))
(ensures (fun h0 _ h1 -> h0 == h1))
assume val rand: unit -> Stack Int32.t
(requires (fun _ -> true))
(ensures (fun h0 _ h1 -> h0 == h1))
assume val exit: Int32.t -> Stack unit
(requires (fun _ -> True))
(ensures (fun h0 _ h1 -> False))
// Re-routed to KRML_HOST_EXIT for environments which don't have a libc
assume val portable_exit: Int32.t -> Stack unit
(requires (fun _ -> True))
(ensures (fun h0 _ h1 -> False))
assume type channel
assume val stdout: channel
assume val stderr: channel
assume val fflush: channel -> St Int32.t
// Abstract char type, with explicit conversions to/from uint8
assume val char: Type0
assume HasEq_char: hasEq char
assume val char_of_uint8: U8.t -> char
assume val uint8_of_char: char -> U8.t
assume val char_uint8 (c: char): Lemma (ensures (char_of_uint8 (uint8_of_char c) = c))
[ SMTPat (uint8_of_char c) ]
assume val uint8_char (u: U8.t): Lemma (ensures (uint8_of_char (char_of_uint8 u) = u))
[ SMTPat (char_of_uint8 u) ]
// Clocks
assume val int: Type0
assume val clock_t: Type0
assume val clock: unit -> Stack clock_t
(requires (fun _ -> true))
(ensures (fun h0 _ h1 -> modifies_none h0 h1))
// C stdlib; the order of these constructors matters for Wasm. When emitting C
// code, this type gets a special case and is not emitted to C.
type exit_code = | EXIT_SUCCESS | EXIT_FAILURE
// Debugging
assume val print_bytes: b:LowStar.Buffer.buffer UInt8.t -> len:UInt32.t{UInt32.v len <= LowStar.Buffer.length b} -> Stack unit
(requires (fun h -> LowStar.Buffer.live h b))
(ensures (fun h0 _ h1 -> h0 == h1))
// An index to be used as argument to Buffer.index so that
// b[_zero_for_deref] is turned into *b
// Special treatment: marked to not be emitted to C | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "C.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.UInt32.t | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | true | false | let _zero_for_deref:FStar.UInt32.t =
| 0ul | false |
LowStar.Regional.fst | LowStar.Regional.rg_dummy | val rg_dummy (#a #rst: _) (rg: regional rst a) : Tot a | val rg_dummy (#a #rst: _) (rg: regional rst a) : Tot a | let rg_dummy #a #rst (rg:regional rst a)
: Tot a
= Rgl?.dummy rg | {
"file_name": "ulib/LowStar.Regional.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 144,
"start_col": 0,
"start_line": 142
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.Regional
(**
* This module defines what is conceptually a typeclass called
* `regional` (although it is not syntactically marked as a `class`
* yet).
*
* `regional a` is the the class of types whose values have explicit
* memory allocations confined spatially within a single heap region
* in the hyperstack memory model.
*
* Being confined to a region, values of regional types support a
* natural framing principles: state mutations that do not overlap
* with a regional value's region are noninterfering.
*
* Instances of regional types are given for buffers and vectors:
* See LowStar.Regional.Instances, LowStar.RVector for samples.
*
*)
open LowStar.Modifies
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
/// Regionality
/// Motivation: we want to ensure that all stateful operations for a value of
/// type `a` are within the `region_of` the value.
///
/// Furthermore, we would like regional to be parameterized over another type class
/// that elements can have. However, we are also trying to extract to C, meaning
/// that we can't incur any run-time lookups and indirections. In essence, we'd
/// like for members of a regional to potentially be partial applications where
/// the first argument may be an agility parameter, an extra type class for the
/// elements, etc. etc. except that partial applications are not allowed in C.
///
/// We therefore add an "st" type, which is a piece of (pure) state (hence more
/// like a parameter) that functions are allowed to capture. Currently, only
/// ``r_alloc`` needs that extra parameter. The parameter is stored within the
/// type class, so that clients are not required to manage that piece of state
/// themselves. This is, in effect, closure-conversion for ``r_alloc`` where the
/// closure state is lifted and stored in the regional itself. As such, the only
/// piece of state that ``r_alloc`` may receive is the exact value that was
/// captured.
///
/// Several alternative designs exist, e.g. making ``a`` at type ``st -> Type0``
/// (won't extract); instantiating ``st`` as a singleton type and dropping the
/// refinement (also works, but doesn't make the intent of closure-conversion
/// explicit); dropping the refinement and leaving it up to the user to store
/// the refinement in ``r_inv`` (which would then take ``state`` as an
/// argument)...
noeq type regional (st:Type) (a:Type0) =
| Rgl:
// This is not really a piece of state, but more like a parameter.
state: st ->
// The target type should have a region where it belongs.
region_of: (a -> GTot HS.rid) ->
//loc_of for the underlying a
loc_of: (a -> GTot loc) ->
// A parameterless value of type `a`.
// It does not have to satisfy the invariant `r_inv` described below.
dummy: a ->
// An invariant we want to maintain for each operation.
// For example, it may include `live` and `freeable` properties
// for related objects.
r_inv: (HS.mem -> a -> GTot Type0) ->
r_inv_reg:
(h:HS.mem -> v:a ->
Lemma (requires (r_inv h v))
(ensures (HS.live_region h (region_of v)))) ->
// A representation type of `a` and a corresponding conversion function
repr: Type0 ->
r_repr: (h:HS.mem -> v:a{r_inv h v} -> GTot repr) ->
// A core separation lemma, saying that the invariant and representation are
// preserved when an orthogonal state transition happens.
r_sep:
(v:a -> p:loc -> h:HS.mem -> h':HS.mem ->
Lemma (requires (r_inv h v /\
loc_disjoint (loc_all_regions_from false (region_of v)) p /\
modifies p h h'))
(ensures (r_inv h' v /\ r_repr h v == r_repr h' v))) ->
/// Allocation
// The representation for the initial value of type `a`
irepr: Ghost.erased repr ->
// A property that should hold for all initial values of type `a`.
r_alloc_p: (a -> GTot Type0) ->
// An allocation operation. We might have several ways of initializing a
// given target type `a`; then multiple typeclass instances should be
// defined, and each of them can be used properly.
r_alloc: ((s:st { s == state }) -> r:HST.erid ->
HST.ST a
(requires (fun h0 -> True))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (HS.get_hmap h0))
(Map.domain (HS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
fresh_loc (loc_of v) h0 h1 /\ //the underlying loc is fresh
r_alloc_p v /\ r_inv h1 v /\ region_of v == r /\
r_repr h1 v == Ghost.reveal irepr))) ->
// Destruction: note that it allows to `modify` all the regions, including
// its subregions. It is fair when we want to `free` a vector and its
// elements as well, assuming the elements belong to subregions.
r_free: ((s:st { s == state }) -> v:a ->
HST.ST unit
(requires (fun h0 -> r_inv h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (region_of v)) h0 h1))) ->
regional st a
let rg_inv #a #rst (rg: regional rst a) =
Rgl?.r_inv rg | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Modifies.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Regional.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Modifies",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | rg: LowStar.Regional.regional rst a -> a | Prims.Tot | [
"total"
] | [] | [
"LowStar.Regional.regional",
"LowStar.Regional.__proj__Rgl__item__dummy"
] | [] | false | false | false | true | false | let rg_dummy #a #rst (rg: regional rst a) : Tot a =
| Rgl?.dummy rg | false |
LowStar.Regional.fst | LowStar.Regional.rg_inv | val rg_inv : rg: LowStar.Regional.regional rst a -> _: FStar.Monotonic.HyperStack.mem -> _: a -> Prims.GTot Type0 | let rg_inv #a #rst (rg: regional rst a) =
Rgl?.r_inv rg | {
"file_name": "ulib/LowStar.Regional.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 139,
"start_col": 0,
"start_line": 138
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.Regional
(**
* This module defines what is conceptually a typeclass called
* `regional` (although it is not syntactically marked as a `class`
* yet).
*
* `regional a` is the the class of types whose values have explicit
* memory allocations confined spatially within a single heap region
* in the hyperstack memory model.
*
* Being confined to a region, values of regional types support a
* natural framing principles: state mutations that do not overlap
* with a regional value's region are noninterfering.
*
* Instances of regional types are given for buffers and vectors:
* See LowStar.Regional.Instances, LowStar.RVector for samples.
*
*)
open LowStar.Modifies
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
/// Regionality
/// Motivation: we want to ensure that all stateful operations for a value of
/// type `a` are within the `region_of` the value.
///
/// Furthermore, we would like regional to be parameterized over another type class
/// that elements can have. However, we are also trying to extract to C, meaning
/// that we can't incur any run-time lookups and indirections. In essence, we'd
/// like for members of a regional to potentially be partial applications where
/// the first argument may be an agility parameter, an extra type class for the
/// elements, etc. etc. except that partial applications are not allowed in C.
///
/// We therefore add an "st" type, which is a piece of (pure) state (hence more
/// like a parameter) that functions are allowed to capture. Currently, only
/// ``r_alloc`` needs that extra parameter. The parameter is stored within the
/// type class, so that clients are not required to manage that piece of state
/// themselves. This is, in effect, closure-conversion for ``r_alloc`` where the
/// closure state is lifted and stored in the regional itself. As such, the only
/// piece of state that ``r_alloc`` may receive is the exact value that was
/// captured.
///
/// Several alternative designs exist, e.g. making ``a`` at type ``st -> Type0``
/// (won't extract); instantiating ``st`` as a singleton type and dropping the
/// refinement (also works, but doesn't make the intent of closure-conversion
/// explicit); dropping the refinement and leaving it up to the user to store
/// the refinement in ``r_inv`` (which would then take ``state`` as an
/// argument)...
noeq type regional (st:Type) (a:Type0) =
| Rgl:
// This is not really a piece of state, but more like a parameter.
state: st ->
// The target type should have a region where it belongs.
region_of: (a -> GTot HS.rid) ->
//loc_of for the underlying a
loc_of: (a -> GTot loc) ->
// A parameterless value of type `a`.
// It does not have to satisfy the invariant `r_inv` described below.
dummy: a ->
// An invariant we want to maintain for each operation.
// For example, it may include `live` and `freeable` properties
// for related objects.
r_inv: (HS.mem -> a -> GTot Type0) ->
r_inv_reg:
(h:HS.mem -> v:a ->
Lemma (requires (r_inv h v))
(ensures (HS.live_region h (region_of v)))) ->
// A representation type of `a` and a corresponding conversion function
repr: Type0 ->
r_repr: (h:HS.mem -> v:a{r_inv h v} -> GTot repr) ->
// A core separation lemma, saying that the invariant and representation are
// preserved when an orthogonal state transition happens.
r_sep:
(v:a -> p:loc -> h:HS.mem -> h':HS.mem ->
Lemma (requires (r_inv h v /\
loc_disjoint (loc_all_regions_from false (region_of v)) p /\
modifies p h h'))
(ensures (r_inv h' v /\ r_repr h v == r_repr h' v))) ->
/// Allocation
// The representation for the initial value of type `a`
irepr: Ghost.erased repr ->
// A property that should hold for all initial values of type `a`.
r_alloc_p: (a -> GTot Type0) ->
// An allocation operation. We might have several ways of initializing a
// given target type `a`; then multiple typeclass instances should be
// defined, and each of them can be used properly.
r_alloc: ((s:st { s == state }) -> r:HST.erid ->
HST.ST a
(requires (fun h0 -> True))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (HS.get_hmap h0))
(Map.domain (HS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
fresh_loc (loc_of v) h0 h1 /\ //the underlying loc is fresh
r_alloc_p v /\ r_inv h1 v /\ region_of v == r /\
r_repr h1 v == Ghost.reveal irepr))) ->
// Destruction: note that it allows to `modify` all the regions, including
// its subregions. It is fair when we want to `free` a vector and its
// elements as well, assuming the elements belong to subregions.
r_free: ((s:st { s == state }) -> v:a ->
HST.ST unit
(requires (fun h0 -> r_inv h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (region_of v)) h0 h1))) ->
regional st a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Modifies.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Regional.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Modifies",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | rg: LowStar.Regional.regional rst a -> _: FStar.Monotonic.HyperStack.mem -> _: a -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"LowStar.Regional.regional",
"LowStar.Regional.__proj__Rgl__item__r_inv",
"FStar.Monotonic.HyperStack.mem"
] | [] | false | false | false | false | true | let rg_inv #a #rst (rg: regional rst a) =
| Rgl?.r_inv rg | false |
|
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vec_r_alloc | val hash_vec_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash_vec #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_vec_r_alloc_p v /\
hash_vec_r_inv h1 v /\
hash_vec_region_of v = r /\
hash_vec_r_repr h1 v == Ghost.reveal hash_vec_irepr /\
B.fresh_loc (V.loc_vector v) h0 h1)) | val hash_vec_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash_vec #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_vec_r_alloc_p v /\
hash_vec_r_inv h1 v /\
hash_vec_region_of v = r /\
hash_vec_r_repr h1 v == Ghost.reveal hash_vec_irepr /\
B.fresh_loc (V.loc_vector v) h0 h1)) | let hash_vec_r_alloc #_ hsz r =
let nrid = HST.new_region r in
// Note: here we are not creating a generic parameterized regional, we are
// creating a specialized regional vector of hashes, so we don't need to go
// through a run-time indirection to figure out what the dummy default element
// is; we know it's the one for hashes
V.alloc_reserve 1ul (hash_dummy #hsz) r | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 41,
"end_line": 277,
"start_col": 0,
"start_line": 271
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract
val hash_vec_repr: #hsz:hash_size_t -> Type0
let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz)
noextract
val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz)
let hash_vec_r_repr #_ h v =
RV.as_seq h v
noextract
val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\
hash_vec_r_repr h0 v == hash_vec_r_repr h1 v))
let hash_vec_r_sep #_ v p h0 h1 =
RV.rv_inv_preserved v p h0 h1;
RV.as_seq_preserved v p h0 h1
noextract
val hash_vec_irepr: #hsz:hash_size_t -> Ghost.erased (hash_vec_repr #hsz)
let hash_vec_irepr #_ = Ghost.hide S.empty
noextract
val hash_vec_r_alloc_p: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_alloc_p #_ v = V.size_of v = 0ul
#push-options "--initial_fuel 1 --max_fuel 1"
val hash_vec_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash_vec #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_vec_r_alloc_p v /\
hash_vec_r_inv h1 v /\
hash_vec_region_of v = r /\
hash_vec_r_repr h1 v == Ghost.reveal hash_vec_irepr /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
hsz: MerkleTree.Low.Datastructures.hash_size_t{hsz == FStar.Ghost.reveal hsz'} ->
r: FStar.HyperStack.ST.erid
-> FStar.HyperStack.ST.ST MerkleTree.Low.Datastructures.hash_vec | FStar.HyperStack.ST.ST | [] | [] | [
"FStar.Ghost.erased",
"MerkleTree.Low.Datastructures.hash_size_t",
"Prims.eq2",
"FStar.Ghost.reveal",
"FStar.HyperStack.ST.erid",
"LowStar.Vector.alloc_reserve",
"MerkleTree.Low.Datastructures.hash",
"FStar.UInt32.__uint_to_t",
"MerkleTree.Low.Datastructures.hash_dummy",
"FStar.Ghost.hide",
"LowStar.Vector.vector",
"FStar.Monotonic.HyperHeap.rid",
"FStar.HyperStack.ST.new_region",
"MerkleTree.Low.Datastructures.hash_vec"
] | [] | false | true | false | false | false | let hash_vec_r_alloc #_ hsz r =
| let nrid = HST.new_region r in
V.alloc_reserve 1ul (hash_dummy #hsz) r | false |
EverParse3d.InputStream.Buffer.Aux.fst | EverParse3d.InputStream.Buffer.Aux._footprint | val _footprint (x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> B.address_liveness_insensitive_locs `B.loc_includes` y)) | val _footprint (x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> B.address_liveness_insensitive_locs `B.loc_includes` y)) | let _footprint
(x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> B.address_liveness_insensitive_locs `B.loc_includes` y))
= B.loc_buffer (IB.slice_of x.buf).LP.base `B.loc_union` IR.loc_perm x.perm_of `B.loc_union` B.loc_buffer x.pos | {
"file_name": "src/3d/prelude/buffer/EverParse3d.InputStream.Buffer.Aux.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 111,
"end_line": 56,
"start_col": 0,
"start_line": 51
} | module EverParse3d.InputStream.Buffer.Aux
(* This module is here to break circularity in KaRaMeL bundles (because Prims must be in the EverParse bundle because of the string type, as opposed to C,FStar,LowStar.) *)
module IB = EverParse3d.InputBuffer
module IR = EverParse3d.Readable
module LP = LowParse.Low.Base
module B = LowStar.Buffer
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
noeq
type input_buffer = {
len0: Ghost.erased U32.t;
buf: IB.input_buffer_t len0;
perm_of: IR.perm (IB.slice_of buf).LP.base;
len: Ghost.erased U32.t;
pos: B.pointer (Ghost.erased U32.t);
g_all_buf: Ghost.erased (Seq.seq U8.t);
g_all: Ghost.erased (Seq.seq U8.t);
prf: squash (
U32.v len <= U32.v len0 /\
Seq.length g_all == U32.v len /\
B.loc_disjoint (B.loc_buffer (IB.slice_of buf).LP.base `B.loc_union` IR.loc_perm perm_of) (B.loc_buffer pos) /\
Seq.length g_all_buf == U32.v len0 /\
Ghost.reveal g_all == Seq.slice g_all_buf 0 (U32.v len)
);
}
inline_for_extraction
noextract
let t = input_buffer
unfold
let _live
(x: t)
(h: HS.mem)
: Tot prop
=
IB.live_input_buffer h x.buf x.perm_of /\
B.live h x.pos /\
U32.v (B.deref h x.pos) <= U32.v x.len /\
B.as_seq h (IB.slice_of x.buf).LP.base == Ghost.reveal x.g_all_buf /\
IR.unreadable h x.perm_of 0ul (B.deref h x.pos) /\
IR.readable h x.perm_of (B.deref h x.pos) x.len0 /\
Seq.slice (B.as_seq h (IB.slice_of x.buf).LP.base) 0 (U32.v x.len) == Ghost.reveal x.g_all | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Base.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverParse3d.Readable.fsti.checked",
"EverParse3d.InputBuffer.fsti.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Buffer.Aux.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowParse.Low.Base",
"short_module": "LP"
},
{
"abbrev": true,
"full_module": "EverParse3d.Readable",
"short_module": "IR"
},
{
"abbrev": true,
"full_module": "EverParse3d.InputBuffer",
"short_module": "IB"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: EverParse3d.InputStream.Buffer.Aux.t -> Prims.Ghost LowStar.Monotonic.Buffer.loc | Prims.Ghost | [] | [] | [
"EverParse3d.InputStream.Buffer.Aux.t",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowParse.Bytes.byte",
"LowParse.Slice.buffer_srel_of_srel",
"EverParse3d.InputBuffer.triv",
"LowParse.Slice.__proj__Mkslice__item__base",
"EverParse3d.InputBuffer.slice_of",
"FStar.Ghost.reveal",
"FStar.UInt32.t",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__len0",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__buf",
"EverParse3d.Readable.loc_perm",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__perm_of",
"FStar.Ghost.erased",
"LowStar.Buffer.trivial_preorder",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__pos",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_True",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.address_liveness_insensitive_locs"
] | [] | false | false | false | false | false | let _footprint (x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> B.address_liveness_insensitive_locs `B.loc_includes` y)) =
| ((B.loc_buffer (IB.slice_of x.buf).LP.base) `B.loc_union` (IR.loc_perm x.perm_of))
`B.loc_union`
(B.loc_buffer x.pos) | false |
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.validate_bcvli | val validate_bcvli:validator parse_bcvli | val validate_bcvli:validator parse_bcvli | let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 32,
"end_line": 57,
"start_col": 0,
"start_line": 16
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.Low.Base.validator LowParse.Spec.BCVLI.parse_bcvli | Prims.Tot | [
"total"
] | [] | [
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.Low.ErrorCode.is_error",
"Prims.bool",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"Prims.op_Equality",
"FStar.UInt32.t",
"LowParse.Low.ErrorCode.validator_error_generic",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Low.BoundedInt.read_bounded_integer_le_2",
"LowParse.Low.ErrorCode.uint64_to_uint32",
"LowParse.Low.Base.validate_total_constant_size",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.parse_bounded_integer_le",
"FStar.UInt64.__uint_to_t",
"LowParse.Low.BoundedInt.read_bounded_integer_le_4",
"LowParse.Low.BoundedInt.read_bounded_integer_le_1",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.BCVLI.parse_bcvli_eq",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.BCVLI.parse_bcvli_kind",
"LowParse.Spec.BCVLI.parse_bcvli",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | false | false | false | true | false | let validate_bcvli:validator parse_bcvli =
| fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@@ inline_let ]let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else
if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul then validator_error_generic else pos2
else
if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul then validator_error_generic else pos2
else validator_error_generic | false |
FStar.UInt64.fsti | FStar.UInt64.eq_mask | val eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) | val eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) | let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 283,
"start_col": 0,
"start_line": 256
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 80,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.t",
"Prims.unit",
"Prims.op_Equality",
"Prims._assert",
"Prims.b2t",
"FStar.UInt.uint_t",
"FStar.UInt64.n",
"FStar.UInt64.v",
"FStar.UInt.ones",
"Prims.l_and",
"Prims.int",
"FStar.UInt.logor_lemma_1",
"FStar.UInt.lognot_lemma_1",
"FStar.UInt.logxor_self",
"Prims.bool",
"FStar.UInt.zero",
"FStar.UInt.lemma_minus_zero",
"FStar.UInt.lemma_msb_pow2",
"FStar.UInt64.lognot",
"FStar.UInt.logxor_neq_nonzero",
"FStar.UInt64.sub_mod",
"FStar.UInt64.uint_to_t",
"FStar.UInt64.shift_right",
"FStar.UInt64.n_minus_one",
"FStar.UInt64.logor",
"FStar.UInt64.minus",
"FStar.UInt64.logxor",
"Prims.l_True",
"Prims.l_imp",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_disEquality"
] | [] | false | false | false | false | false | let eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) =
| let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b
then
(logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n))
else
(logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n));
c | false |
EverParse3d.InputStream.Buffer.Aux.fst | EverParse3d.InputStream.Buffer.Aux._live | val _live (x: t) (h: HS.mem) : Tot prop | val _live (x: t) (h: HS.mem) : Tot prop | let _live
(x: t)
(h: HS.mem)
: Tot prop
=
IB.live_input_buffer h x.buf x.perm_of /\
B.live h x.pos /\
U32.v (B.deref h x.pos) <= U32.v x.len /\
B.as_seq h (IB.slice_of x.buf).LP.base == Ghost.reveal x.g_all_buf /\
IR.unreadable h x.perm_of 0ul (B.deref h x.pos) /\
IR.readable h x.perm_of (B.deref h x.pos) x.len0 /\
Seq.slice (B.as_seq h (IB.slice_of x.buf).LP.base) 0 (U32.v x.len) == Ghost.reveal x.g_all | {
"file_name": "src/3d/prelude/buffer/EverParse3d.InputStream.Buffer.Aux.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 92,
"end_line": 49,
"start_col": 0,
"start_line": 38
} | module EverParse3d.InputStream.Buffer.Aux
(* This module is here to break circularity in KaRaMeL bundles (because Prims must be in the EverParse bundle because of the string type, as opposed to C,FStar,LowStar.) *)
module IB = EverParse3d.InputBuffer
module IR = EverParse3d.Readable
module LP = LowParse.Low.Base
module B = LowStar.Buffer
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
noeq
type input_buffer = {
len0: Ghost.erased U32.t;
buf: IB.input_buffer_t len0;
perm_of: IR.perm (IB.slice_of buf).LP.base;
len: Ghost.erased U32.t;
pos: B.pointer (Ghost.erased U32.t);
g_all_buf: Ghost.erased (Seq.seq U8.t);
g_all: Ghost.erased (Seq.seq U8.t);
prf: squash (
U32.v len <= U32.v len0 /\
Seq.length g_all == U32.v len /\
B.loc_disjoint (B.loc_buffer (IB.slice_of buf).LP.base `B.loc_union` IR.loc_perm perm_of) (B.loc_buffer pos) /\
Seq.length g_all_buf == U32.v len0 /\
Ghost.reveal g_all == Seq.slice g_all_buf 0 (U32.v len)
);
}
inline_for_extraction
noextract
let t = input_buffer | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Base.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverParse3d.Readable.fsti.checked",
"EverParse3d.InputBuffer.fsti.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Buffer.Aux.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowParse.Low.Base",
"short_module": "LP"
},
{
"abbrev": true,
"full_module": "EverParse3d.Readable",
"short_module": "IR"
},
{
"abbrev": true,
"full_module": "EverParse3d.InputBuffer",
"short_module": "IB"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: EverParse3d.InputStream.Buffer.Aux.t -> h: FStar.Monotonic.HyperStack.mem -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"EverParse3d.InputStream.Buffer.Aux.t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"EverParse3d.InputBuffer.live_input_buffer",
"FStar.Ghost.reveal",
"FStar.UInt32.t",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__len0",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__buf",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__perm_of",
"LowStar.Monotonic.Buffer.live",
"FStar.Ghost.erased",
"LowStar.Buffer.trivial_preorder",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__pos",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"LowStar.Monotonic.Buffer.deref",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__len",
"Prims.eq2",
"FStar.Seq.Base.seq",
"LowParse.Bytes.byte",
"LowStar.Monotonic.Buffer.as_seq",
"LowParse.Slice.buffer_srel_of_srel",
"EverParse3d.InputBuffer.triv",
"LowParse.Slice.__proj__Mkslice__item__base",
"EverParse3d.InputBuffer.slice_of",
"FStar.UInt8.t",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__g_all_buf",
"EverParse3d.Readable.unreadable",
"FStar.UInt32.__uint_to_t",
"EverParse3d.Readable.readable",
"FStar.Seq.Base.slice",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__g_all",
"Prims.prop"
] | [] | false | false | false | true | true | let _live (x: t) (h: HS.mem) : Tot prop =
| IB.live_input_buffer h x.buf x.perm_of /\ B.live h x.pos /\ U32.v (B.deref h x.pos) <= U32.v x.len /\
B.as_seq h (IB.slice_of x.buf).LP.base == Ghost.reveal x.g_all_buf /\
IR.unreadable h x.perm_of 0ul (B.deref h x.pos) /\ IR.readable h x.perm_of (B.deref h x.pos) x.len0 /\
Seq.slice (B.as_seq h (IB.slice_of x.buf).LP.base) 0 (U32.v x.len) == Ghost.reveal x.g_all | false |
EverParse3d.InputStream.Buffer.Aux.fst | EverParse3d.InputStream.Buffer.Aux._get_remaining | val _get_remaining (x: t) (h: HS.mem)
: Ghost (Seq.seq U8.t) (requires (_live x h)) (ensures (fun y -> Seq.length y <= U32.v x.len)) | val _get_remaining (x: t) (h: HS.mem)
: Ghost (Seq.seq U8.t) (requires (_live x h)) (ensures (fun y -> Seq.length y <= U32.v x.len)) | let _get_remaining
(x: t)
(h: HS.mem)
: Ghost (Seq.seq U8.t)
(requires (_live x h))
(ensures (fun y -> Seq.length y <= U32.v x.len))
=
let i = U32.v (B.deref h x.pos) in
Seq.slice x.g_all i (Seq.length x.g_all) | {
"file_name": "src/3d/prelude/buffer/EverParse3d.InputStream.Buffer.Aux.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 42,
"end_line": 73,
"start_col": 0,
"start_line": 65
} | module EverParse3d.InputStream.Buffer.Aux
(* This module is here to break circularity in KaRaMeL bundles (because Prims must be in the EverParse bundle because of the string type, as opposed to C,FStar,LowStar.) *)
module IB = EverParse3d.InputBuffer
module IR = EverParse3d.Readable
module LP = LowParse.Low.Base
module B = LowStar.Buffer
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
noeq
type input_buffer = {
len0: Ghost.erased U32.t;
buf: IB.input_buffer_t len0;
perm_of: IR.perm (IB.slice_of buf).LP.base;
len: Ghost.erased U32.t;
pos: B.pointer (Ghost.erased U32.t);
g_all_buf: Ghost.erased (Seq.seq U8.t);
g_all: Ghost.erased (Seq.seq U8.t);
prf: squash (
U32.v len <= U32.v len0 /\
Seq.length g_all == U32.v len /\
B.loc_disjoint (B.loc_buffer (IB.slice_of buf).LP.base `B.loc_union` IR.loc_perm perm_of) (B.loc_buffer pos) /\
Seq.length g_all_buf == U32.v len0 /\
Ghost.reveal g_all == Seq.slice g_all_buf 0 (U32.v len)
);
}
inline_for_extraction
noextract
let t = input_buffer
unfold
let _live
(x: t)
(h: HS.mem)
: Tot prop
=
IB.live_input_buffer h x.buf x.perm_of /\
B.live h x.pos /\
U32.v (B.deref h x.pos) <= U32.v x.len /\
B.as_seq h (IB.slice_of x.buf).LP.base == Ghost.reveal x.g_all_buf /\
IR.unreadable h x.perm_of 0ul (B.deref h x.pos) /\
IR.readable h x.perm_of (B.deref h x.pos) x.len0 /\
Seq.slice (B.as_seq h (IB.slice_of x.buf).LP.base) 0 (U32.v x.len) == Ghost.reveal x.g_all
let _footprint
(x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> B.address_liveness_insensitive_locs `B.loc_includes` y))
= B.loc_buffer (IB.slice_of x.buf).LP.base `B.loc_union` IR.loc_perm x.perm_of `B.loc_union` B.loc_buffer x.pos
let _perm_footprint
(x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> _footprint x `B.loc_includes` y))
= IR.loc_perm x.perm_of `B.loc_union` B.loc_buffer x.pos | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Base.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverParse3d.Readable.fsti.checked",
"EverParse3d.InputBuffer.fsti.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Buffer.Aux.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowParse.Low.Base",
"short_module": "LP"
},
{
"abbrev": true,
"full_module": "EverParse3d.Readable",
"short_module": "IR"
},
{
"abbrev": true,
"full_module": "EverParse3d.InputBuffer",
"short_module": "IB"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: EverParse3d.InputStream.Buffer.Aux.t -> h: FStar.Monotonic.HyperStack.mem
-> Prims.Ghost (FStar.Seq.Base.seq FStar.UInt8.t) | Prims.Ghost | [] | [] | [
"EverParse3d.InputStream.Buffer.Aux.t",
"FStar.Monotonic.HyperStack.mem",
"FStar.Seq.Base.slice",
"FStar.UInt8.t",
"FStar.Ghost.reveal",
"FStar.Seq.Base.seq",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__g_all",
"FStar.Seq.Base.length",
"FStar.UInt.uint_t",
"FStar.UInt32.v",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.deref",
"FStar.Ghost.erased",
"LowStar.Buffer.trivial_preorder",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__pos",
"EverParse3d.InputStream.Buffer.Aux._live",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__len"
] | [] | false | false | false | false | false | let _get_remaining (x: t) (h: HS.mem)
: Ghost (Seq.seq U8.t) (requires (_live x h)) (ensures (fun y -> Seq.length y <= U32.v x.len)) =
| let i = U32.v (B.deref h x.pos) in
Seq.slice x.g_all i (Seq.length x.g_all) | false |
EverParse3d.InputStream.Buffer.Aux.fst | EverParse3d.InputStream.Buffer.Aux._perm_footprint | val _perm_footprint (x: t)
: Ghost B.loc (requires True) (ensures (fun y -> (_footprint x) `B.loc_includes` y)) | val _perm_footprint (x: t)
: Ghost B.loc (requires True) (ensures (fun y -> (_footprint x) `B.loc_includes` y)) | let _perm_footprint
(x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> _footprint x `B.loc_includes` y))
= IR.loc_perm x.perm_of `B.loc_union` B.loc_buffer x.pos | {
"file_name": "src/3d/prelude/buffer/EverParse3d.InputStream.Buffer.Aux.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 56,
"end_line": 63,
"start_col": 0,
"start_line": 58
} | module EverParse3d.InputStream.Buffer.Aux
(* This module is here to break circularity in KaRaMeL bundles (because Prims must be in the EverParse bundle because of the string type, as opposed to C,FStar,LowStar.) *)
module IB = EverParse3d.InputBuffer
module IR = EverParse3d.Readable
module LP = LowParse.Low.Base
module B = LowStar.Buffer
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
noeq
type input_buffer = {
len0: Ghost.erased U32.t;
buf: IB.input_buffer_t len0;
perm_of: IR.perm (IB.slice_of buf).LP.base;
len: Ghost.erased U32.t;
pos: B.pointer (Ghost.erased U32.t);
g_all_buf: Ghost.erased (Seq.seq U8.t);
g_all: Ghost.erased (Seq.seq U8.t);
prf: squash (
U32.v len <= U32.v len0 /\
Seq.length g_all == U32.v len /\
B.loc_disjoint (B.loc_buffer (IB.slice_of buf).LP.base `B.loc_union` IR.loc_perm perm_of) (B.loc_buffer pos) /\
Seq.length g_all_buf == U32.v len0 /\
Ghost.reveal g_all == Seq.slice g_all_buf 0 (U32.v len)
);
}
inline_for_extraction
noextract
let t = input_buffer
unfold
let _live
(x: t)
(h: HS.mem)
: Tot prop
=
IB.live_input_buffer h x.buf x.perm_of /\
B.live h x.pos /\
U32.v (B.deref h x.pos) <= U32.v x.len /\
B.as_seq h (IB.slice_of x.buf).LP.base == Ghost.reveal x.g_all_buf /\
IR.unreadable h x.perm_of 0ul (B.deref h x.pos) /\
IR.readable h x.perm_of (B.deref h x.pos) x.len0 /\
Seq.slice (B.as_seq h (IB.slice_of x.buf).LP.base) 0 (U32.v x.len) == Ghost.reveal x.g_all
let _footprint
(x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> B.address_liveness_insensitive_locs `B.loc_includes` y))
= B.loc_buffer (IB.slice_of x.buf).LP.base `B.loc_union` IR.loc_perm x.perm_of `B.loc_union` B.loc_buffer x.pos | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Base.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverParse3d.Readable.fsti.checked",
"EverParse3d.InputBuffer.fsti.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Buffer.Aux.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowParse.Low.Base",
"short_module": "LP"
},
{
"abbrev": true,
"full_module": "EverParse3d.Readable",
"short_module": "IR"
},
{
"abbrev": true,
"full_module": "EverParse3d.InputBuffer",
"short_module": "IB"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: EverParse3d.InputStream.Buffer.Aux.t -> Prims.Ghost LowStar.Monotonic.Buffer.loc | Prims.Ghost | [] | [] | [
"EverParse3d.InputStream.Buffer.Aux.t",
"LowStar.Monotonic.Buffer.loc_union",
"EverParse3d.Readable.loc_perm",
"LowParse.Bytes.byte",
"LowParse.Slice.__proj__Mkslice__item__base",
"EverParse3d.InputBuffer.triv",
"EverParse3d.InputBuffer.slice_of",
"FStar.Ghost.reveal",
"FStar.UInt32.t",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__len0",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__buf",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__perm_of",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Ghost.erased",
"LowStar.Buffer.trivial_preorder",
"EverParse3d.InputStream.Buffer.Aux.__proj__Mkinput_buffer__item__pos",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_True",
"LowStar.Monotonic.Buffer.loc_includes",
"EverParse3d.InputStream.Buffer.Aux._footprint"
] | [] | false | false | false | false | false | let _perm_footprint (x: t)
: Ghost B.loc (requires True) (ensures (fun y -> (_footprint x) `B.loc_includes` y)) =
| (IR.loc_perm x.perm_of) `B.loc_union` (B.loc_buffer x.pos) | false |
LowStar.Regional.fst | LowStar.Regional.rg_free | val rg_free (#a #rst: _) (rg: regional rst a) (v: a)
: HST.ST unit
(requires (fun h0 -> rg_inv rg h0 v))
(ensures (fun h0 _ h1 -> modifies (loc_all_regions_from false (Rgl?.region_of rg v)) h0 h1)) | val rg_free (#a #rst: _) (rg: regional rst a) (v: a)
: HST.ST unit
(requires (fun h0 -> rg_inv rg h0 v))
(ensures (fun h0 _ h1 -> modifies (loc_all_regions_from false (Rgl?.region_of rg v)) h0 h1)) | let rg_free #a #rst (rg:regional rst a) (v:a)
: HST.ST unit
(requires (fun h0 -> rg_inv rg h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (Rgl?.region_of rg v)) h0 h1))
= (Rgl?.r_free rg) (Rgl?.state rg) v | {
"file_name": "ulib/LowStar.Regional.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 165,
"start_col": 0,
"start_line": 160
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.Regional
(**
* This module defines what is conceptually a typeclass called
* `regional` (although it is not syntactically marked as a `class`
* yet).
*
* `regional a` is the the class of types whose values have explicit
* memory allocations confined spatially within a single heap region
* in the hyperstack memory model.
*
* Being confined to a region, values of regional types support a
* natural framing principles: state mutations that do not overlap
* with a regional value's region are noninterfering.
*
* Instances of regional types are given for buffers and vectors:
* See LowStar.Regional.Instances, LowStar.RVector for samples.
*
*)
open LowStar.Modifies
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
/// Regionality
/// Motivation: we want to ensure that all stateful operations for a value of
/// type `a` are within the `region_of` the value.
///
/// Furthermore, we would like regional to be parameterized over another type class
/// that elements can have. However, we are also trying to extract to C, meaning
/// that we can't incur any run-time lookups and indirections. In essence, we'd
/// like for members of a regional to potentially be partial applications where
/// the first argument may be an agility parameter, an extra type class for the
/// elements, etc. etc. except that partial applications are not allowed in C.
///
/// We therefore add an "st" type, which is a piece of (pure) state (hence more
/// like a parameter) that functions are allowed to capture. Currently, only
/// ``r_alloc`` needs that extra parameter. The parameter is stored within the
/// type class, so that clients are not required to manage that piece of state
/// themselves. This is, in effect, closure-conversion for ``r_alloc`` where the
/// closure state is lifted and stored in the regional itself. As such, the only
/// piece of state that ``r_alloc`` may receive is the exact value that was
/// captured.
///
/// Several alternative designs exist, e.g. making ``a`` at type ``st -> Type0``
/// (won't extract); instantiating ``st`` as a singleton type and dropping the
/// refinement (also works, but doesn't make the intent of closure-conversion
/// explicit); dropping the refinement and leaving it up to the user to store
/// the refinement in ``r_inv`` (which would then take ``state`` as an
/// argument)...
noeq type regional (st:Type) (a:Type0) =
| Rgl:
// This is not really a piece of state, but more like a parameter.
state: st ->
// The target type should have a region where it belongs.
region_of: (a -> GTot HS.rid) ->
//loc_of for the underlying a
loc_of: (a -> GTot loc) ->
// A parameterless value of type `a`.
// It does not have to satisfy the invariant `r_inv` described below.
dummy: a ->
// An invariant we want to maintain for each operation.
// For example, it may include `live` and `freeable` properties
// for related objects.
r_inv: (HS.mem -> a -> GTot Type0) ->
r_inv_reg:
(h:HS.mem -> v:a ->
Lemma (requires (r_inv h v))
(ensures (HS.live_region h (region_of v)))) ->
// A representation type of `a` and a corresponding conversion function
repr: Type0 ->
r_repr: (h:HS.mem -> v:a{r_inv h v} -> GTot repr) ->
// A core separation lemma, saying that the invariant and representation are
// preserved when an orthogonal state transition happens.
r_sep:
(v:a -> p:loc -> h:HS.mem -> h':HS.mem ->
Lemma (requires (r_inv h v /\
loc_disjoint (loc_all_regions_from false (region_of v)) p /\
modifies p h h'))
(ensures (r_inv h' v /\ r_repr h v == r_repr h' v))) ->
/// Allocation
// The representation for the initial value of type `a`
irepr: Ghost.erased repr ->
// A property that should hold for all initial values of type `a`.
r_alloc_p: (a -> GTot Type0) ->
// An allocation operation. We might have several ways of initializing a
// given target type `a`; then multiple typeclass instances should be
// defined, and each of them can be used properly.
r_alloc: ((s:st { s == state }) -> r:HST.erid ->
HST.ST a
(requires (fun h0 -> True))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (HS.get_hmap h0))
(Map.domain (HS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
fresh_loc (loc_of v) h0 h1 /\ //the underlying loc is fresh
r_alloc_p v /\ r_inv h1 v /\ region_of v == r /\
r_repr h1 v == Ghost.reveal irepr))) ->
// Destruction: note that it allows to `modify` all the regions, including
// its subregions. It is fair when we want to `free` a vector and its
// elements as well, assuming the elements belong to subregions.
r_free: ((s:st { s == state }) -> v:a ->
HST.ST unit
(requires (fun h0 -> r_inv h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (region_of v)) h0 h1))) ->
regional st a
let rg_inv #a #rst (rg: regional rst a) =
Rgl?.r_inv rg
inline_for_extraction
let rg_dummy #a #rst (rg:regional rst a)
: Tot a
= Rgl?.dummy rg
inline_for_extraction
let rg_alloc #a #rst (rg:regional rst a) (r:HST.erid)
: HST.ST a
(requires (fun h0 -> True))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (HS.get_hmap h0))
(Map.domain (HS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
fresh_loc (Rgl?.loc_of rg v) h0 h1 /\
(Rgl?.r_alloc_p rg) v /\ rg_inv rg h1 v /\ (Rgl?.region_of rg) v == r /\
(Rgl?.r_repr rg) h1 v == Ghost.reveal (Rgl?.irepr rg)))
= Rgl?.r_alloc rg (Rgl?.state rg) r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Modifies.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Regional.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Modifies",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | rg: LowStar.Regional.regional rst a -> v: a -> FStar.HyperStack.ST.ST Prims.unit | FStar.HyperStack.ST.ST | [] | [] | [
"LowStar.Regional.regional",
"LowStar.Regional.__proj__Rgl__item__r_free",
"LowStar.Regional.__proj__Rgl__item__state",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Regional.rg_inv",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_all_regions_from",
"LowStar.Regional.__proj__Rgl__item__region_of"
] | [] | false | true | false | false | false | let rg_free #a #rst (rg: regional rst a) (v: a)
: HST.ST unit
(requires (fun h0 -> rg_inv rg h0 v))
(ensures (fun h0 _ h1 -> modifies (loc_all_regions_from false (Rgl?.region_of rg v)) h0 h1)) =
| (Rgl?.r_free rg) (Rgl?.state rg) v | false |
LowStar.Regional.fst | LowStar.Regional.rg_alloc | val rg_alloc (#a #rst: _) (rg: regional rst a) (r: HST.erid)
: HST.ST a
(requires (fun h0 -> True))
(ensures
(fun h0 v h1 ->
Set.subset (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\
modifies loc_none h0 h1 /\ fresh_loc (Rgl?.loc_of rg v) h0 h1 /\ (Rgl?.r_alloc_p rg) v /\
rg_inv rg h1 v /\ (Rgl?.region_of rg) v == r /\
(Rgl?.r_repr rg) h1 v == Ghost.reveal (Rgl?.irepr rg))) | val rg_alloc (#a #rst: _) (rg: regional rst a) (r: HST.erid)
: HST.ST a
(requires (fun h0 -> True))
(ensures
(fun h0 v h1 ->
Set.subset (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\
modifies loc_none h0 h1 /\ fresh_loc (Rgl?.loc_of rg v) h0 h1 /\ (Rgl?.r_alloc_p rg) v /\
rg_inv rg h1 v /\ (Rgl?.region_of rg) v == r /\
(Rgl?.r_repr rg) h1 v == Ghost.reveal (Rgl?.irepr rg))) | let rg_alloc #a #rst (rg:regional rst a) (r:HST.erid)
: HST.ST a
(requires (fun h0 -> True))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (HS.get_hmap h0))
(Map.domain (HS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
fresh_loc (Rgl?.loc_of rg v) h0 h1 /\
(Rgl?.r_alloc_p rg) v /\ rg_inv rg h1 v /\ (Rgl?.region_of rg) v == r /\
(Rgl?.r_repr rg) h1 v == Ghost.reveal (Rgl?.irepr rg)))
= Rgl?.r_alloc rg (Rgl?.state rg) r | {
"file_name": "ulib/LowStar.Regional.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 157,
"start_col": 0,
"start_line": 147
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.Regional
(**
* This module defines what is conceptually a typeclass called
* `regional` (although it is not syntactically marked as a `class`
* yet).
*
* `regional a` is the the class of types whose values have explicit
* memory allocations confined spatially within a single heap region
* in the hyperstack memory model.
*
* Being confined to a region, values of regional types support a
* natural framing principles: state mutations that do not overlap
* with a regional value's region are noninterfering.
*
* Instances of regional types are given for buffers and vectors:
* See LowStar.Regional.Instances, LowStar.RVector for samples.
*
*)
open LowStar.Modifies
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
/// Regionality
/// Motivation: we want to ensure that all stateful operations for a value of
/// type `a` are within the `region_of` the value.
///
/// Furthermore, we would like regional to be parameterized over another type class
/// that elements can have. However, we are also trying to extract to C, meaning
/// that we can't incur any run-time lookups and indirections. In essence, we'd
/// like for members of a regional to potentially be partial applications where
/// the first argument may be an agility parameter, an extra type class for the
/// elements, etc. etc. except that partial applications are not allowed in C.
///
/// We therefore add an "st" type, which is a piece of (pure) state (hence more
/// like a parameter) that functions are allowed to capture. Currently, only
/// ``r_alloc`` needs that extra parameter. The parameter is stored within the
/// type class, so that clients are not required to manage that piece of state
/// themselves. This is, in effect, closure-conversion for ``r_alloc`` where the
/// closure state is lifted and stored in the regional itself. As such, the only
/// piece of state that ``r_alloc`` may receive is the exact value that was
/// captured.
///
/// Several alternative designs exist, e.g. making ``a`` at type ``st -> Type0``
/// (won't extract); instantiating ``st`` as a singleton type and dropping the
/// refinement (also works, but doesn't make the intent of closure-conversion
/// explicit); dropping the refinement and leaving it up to the user to store
/// the refinement in ``r_inv`` (which would then take ``state`` as an
/// argument)...
noeq type regional (st:Type) (a:Type0) =
| Rgl:
// This is not really a piece of state, but more like a parameter.
state: st ->
// The target type should have a region where it belongs.
region_of: (a -> GTot HS.rid) ->
//loc_of for the underlying a
loc_of: (a -> GTot loc) ->
// A parameterless value of type `a`.
// It does not have to satisfy the invariant `r_inv` described below.
dummy: a ->
// An invariant we want to maintain for each operation.
// For example, it may include `live` and `freeable` properties
// for related objects.
r_inv: (HS.mem -> a -> GTot Type0) ->
r_inv_reg:
(h:HS.mem -> v:a ->
Lemma (requires (r_inv h v))
(ensures (HS.live_region h (region_of v)))) ->
// A representation type of `a` and a corresponding conversion function
repr: Type0 ->
r_repr: (h:HS.mem -> v:a{r_inv h v} -> GTot repr) ->
// A core separation lemma, saying that the invariant and representation are
// preserved when an orthogonal state transition happens.
r_sep:
(v:a -> p:loc -> h:HS.mem -> h':HS.mem ->
Lemma (requires (r_inv h v /\
loc_disjoint (loc_all_regions_from false (region_of v)) p /\
modifies p h h'))
(ensures (r_inv h' v /\ r_repr h v == r_repr h' v))) ->
/// Allocation
// The representation for the initial value of type `a`
irepr: Ghost.erased repr ->
// A property that should hold for all initial values of type `a`.
r_alloc_p: (a -> GTot Type0) ->
// An allocation operation. We might have several ways of initializing a
// given target type `a`; then multiple typeclass instances should be
// defined, and each of them can be used properly.
r_alloc: ((s:st { s == state }) -> r:HST.erid ->
HST.ST a
(requires (fun h0 -> True))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (HS.get_hmap h0))
(Map.domain (HS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
fresh_loc (loc_of v) h0 h1 /\ //the underlying loc is fresh
r_alloc_p v /\ r_inv h1 v /\ region_of v == r /\
r_repr h1 v == Ghost.reveal irepr))) ->
// Destruction: note that it allows to `modify` all the regions, including
// its subregions. It is fair when we want to `free` a vector and its
// elements as well, assuming the elements belong to subregions.
r_free: ((s:st { s == state }) -> v:a ->
HST.ST unit
(requires (fun h0 -> r_inv h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (region_of v)) h0 h1))) ->
regional st a
let rg_inv #a #rst (rg: regional rst a) =
Rgl?.r_inv rg
inline_for_extraction
let rg_dummy #a #rst (rg:regional rst a)
: Tot a
= Rgl?.dummy rg | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Modifies.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.Regional.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Modifies",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | rg: LowStar.Regional.regional rst a -> r: FStar.HyperStack.ST.erid -> FStar.HyperStack.ST.ST a | FStar.HyperStack.ST.ST | [] | [] | [
"LowStar.Regional.regional",
"FStar.HyperStack.ST.erid",
"LowStar.Regional.__proj__Rgl__item__r_alloc",
"LowStar.Regional.__proj__Rgl__item__state",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_True",
"Prims.l_and",
"FStar.Set.subset",
"FStar.Monotonic.HyperHeap.rid",
"FStar.Map.domain",
"FStar.Monotonic.Heap.heap",
"FStar.Monotonic.HyperStack.get_hmap",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"LowStar.Monotonic.Buffer.fresh_loc",
"LowStar.Regional.__proj__Rgl__item__loc_of",
"LowStar.Regional.__proj__Rgl__item__r_alloc_p",
"LowStar.Regional.rg_inv",
"Prims.eq2",
"LowStar.Regional.__proj__Rgl__item__region_of",
"LowStar.Regional.__proj__Rgl__item__repr",
"LowStar.Regional.__proj__Rgl__item__r_repr",
"FStar.Ghost.reveal",
"LowStar.Regional.__proj__Rgl__item__irepr"
] | [] | false | true | false | false | false | let rg_alloc #a #rst (rg: regional rst a) (r: HST.erid)
: HST.ST a
(requires (fun h0 -> True))
(ensures
(fun h0 v h1 ->
Set.subset (Map.domain (HS.get_hmap h0)) (Map.domain (HS.get_hmap h1)) /\
modifies loc_none h0 h1 /\ fresh_loc (Rgl?.loc_of rg v) h0 h1 /\ (Rgl?.r_alloc_p rg) v /\
rg_inv rg h1 v /\ (Rgl?.region_of rg) v == r /\
(Rgl?.r_repr rg) h1 v == Ghost.reveal (Rgl?.irepr rg))) =
| Rgl?.r_alloc rg (Rgl?.state rg) r | false |
FStar.UInt64.fsti | FStar.UInt64.gte_mask | val gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) | val gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) | let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c | {
"file_name": "ulib/FStar.UInt64.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 312,
"start_col": 0,
"start_line": 295
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt64
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 64
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt64.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 80,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt64.t -> b: FStar.UInt64.t -> Prims.Pure FStar.UInt64.t | Prims.Pure | [] | [] | [
"FStar.UInt64.t",
"Prims.unit",
"FStar.UInt.lemma_msb_gte",
"FStar.UInt64.n",
"FStar.UInt64.v",
"FStar.UInt64.lemma_sub_msbs",
"FStar.UInt64.sub_mod",
"FStar.UInt64.uint_to_t",
"FStar.UInt64.shift_right",
"FStar.UInt64.n_minus_one",
"FStar.UInt64.logxor",
"FStar.UInt64.logor",
"Prims.l_True",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_LessThan"
] | [] | false | false | false | false | false | let gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) =
| let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c | false |
EverParse3d.InputStream.Buffer.Aux.fst | EverParse3d.InputStream.Buffer.Aux.default_error_handler | val default_error_handler
(typename_s fieldname reason: string)
(error_code: U64.t)
(context: B.pointer EverParse3d.ErrorCode.error_frame)
(input: input_buffer)
(start_pos: U64.t)
: HST.Stack unit
(requires (fun h -> B.live h context))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer context) h h')) | val default_error_handler
(typename_s fieldname reason: string)
(error_code: U64.t)
(context: B.pointer EverParse3d.ErrorCode.error_frame)
(input: input_buffer)
(start_pos: U64.t)
: HST.Stack unit
(requires (fun h -> B.live h context))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer context) h h')) | let default_error_handler
(typename_s: string)
(fieldname: string)
(reason: string)
(error_code: U64.t)
(context: B.pointer EverParse3d.ErrorCode.error_frame)
(input: input_buffer)
(start_pos: U64.t)
: HST.Stack unit
(requires (fun h -> B.live h context))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer context) h h'))
=
if not ( !* context ).EverParse3d.ErrorCode.filled then begin
context *= {
EverParse3d.ErrorCode.filled = true;
EverParse3d.ErrorCode.start_pos = start_pos;
EverParse3d.ErrorCode.typename_s = typename_s;
EverParse3d.ErrorCode.fieldname = fieldname;
EverParse3d.ErrorCode.reason = reason;
EverParse3d.ErrorCode.error_code = error_code;
}
end | {
"file_name": "src/3d/prelude/buffer/EverParse3d.InputStream.Buffer.Aux.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 5,
"end_line": 100,
"start_col": 0,
"start_line": 79
} | module EverParse3d.InputStream.Buffer.Aux
(* This module is here to break circularity in KaRaMeL bundles (because Prims must be in the EverParse bundle because of the string type, as opposed to C,FStar,LowStar.) *)
module IB = EverParse3d.InputBuffer
module IR = EverParse3d.Readable
module LP = LowParse.Low.Base
module B = LowStar.Buffer
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
noeq
type input_buffer = {
len0: Ghost.erased U32.t;
buf: IB.input_buffer_t len0;
perm_of: IR.perm (IB.slice_of buf).LP.base;
len: Ghost.erased U32.t;
pos: B.pointer (Ghost.erased U32.t);
g_all_buf: Ghost.erased (Seq.seq U8.t);
g_all: Ghost.erased (Seq.seq U8.t);
prf: squash (
U32.v len <= U32.v len0 /\
Seq.length g_all == U32.v len /\
B.loc_disjoint (B.loc_buffer (IB.slice_of buf).LP.base `B.loc_union` IR.loc_perm perm_of) (B.loc_buffer pos) /\
Seq.length g_all_buf == U32.v len0 /\
Ghost.reveal g_all == Seq.slice g_all_buf 0 (U32.v len)
);
}
inline_for_extraction
noextract
let t = input_buffer
unfold
let _live
(x: t)
(h: HS.mem)
: Tot prop
=
IB.live_input_buffer h x.buf x.perm_of /\
B.live h x.pos /\
U32.v (B.deref h x.pos) <= U32.v x.len /\
B.as_seq h (IB.slice_of x.buf).LP.base == Ghost.reveal x.g_all_buf /\
IR.unreadable h x.perm_of 0ul (B.deref h x.pos) /\
IR.readable h x.perm_of (B.deref h x.pos) x.len0 /\
Seq.slice (B.as_seq h (IB.slice_of x.buf).LP.base) 0 (U32.v x.len) == Ghost.reveal x.g_all
let _footprint
(x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> B.address_liveness_insensitive_locs `B.loc_includes` y))
= B.loc_buffer (IB.slice_of x.buf).LP.base `B.loc_union` IR.loc_perm x.perm_of `B.loc_union` B.loc_buffer x.pos
let _perm_footprint
(x: t)
: Ghost B.loc
(requires True)
(ensures (fun y -> _footprint x `B.loc_includes` y))
= IR.loc_perm x.perm_of `B.loc_union` B.loc_buffer x.pos
let _get_remaining
(x: t)
(h: HS.mem)
: Ghost (Seq.seq U8.t)
(requires (_live x h))
(ensures (fun y -> Seq.length y <= U32.v x.len))
=
let i = U32.v (B.deref h x.pos) in
Seq.slice x.g_all i (Seq.length x.g_all)
(* default error handler *)
open LowStar.BufferOps | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Base.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverParse3d.Readable.fsti.checked",
"EverParse3d.InputBuffer.fsti.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Buffer.Aux.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowParse.Low.Base",
"short_module": "LP"
},
{
"abbrev": true,
"full_module": "EverParse3d.Readable",
"short_module": "IR"
},
{
"abbrev": true,
"full_module": "EverParse3d.InputBuffer",
"short_module": "IB"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
typename_s: Prims.string ->
fieldname: Prims.string ->
reason: Prims.string ->
error_code: FStar.UInt64.t ->
context: LowStar.Buffer.pointer EverParse3d.ErrorCode.error_frame ->
input: EverParse3d.InputStream.Buffer.Aux.input_buffer ->
start_pos: FStar.UInt64.t
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Prims.string",
"FStar.UInt64.t",
"LowStar.Buffer.pointer",
"EverParse3d.ErrorCode.error_frame",
"EverParse3d.InputStream.Buffer.Aux.input_buffer",
"LowStar.BufferOps.op_Star_Equals",
"LowStar.Buffer.trivial_preorder",
"EverParse3d.ErrorCode.Mkerror_frame",
"Prims.unit",
"Prims.bool",
"Prims.op_Negation",
"EverParse3d.ErrorCode.__proj__Mkerror_frame__item__filled",
"LowStar.BufferOps.op_Bang_Star",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer"
] | [] | false | true | false | false | false | let default_error_handler
(typename_s fieldname reason: string)
(error_code: U64.t)
(context: B.pointer EverParse3d.ErrorCode.error_frame)
(input: input_buffer)
(start_pos: U64.t)
: HST.Stack unit
(requires (fun h -> B.live h context))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer context) h h')) =
| if not (!*context).EverParse3d.ErrorCode.filled
then
context *=
{
EverParse3d.ErrorCode.filled = true;
EverParse3d.ErrorCode.start_pos = start_pos;
EverParse3d.ErrorCode.typename_s = typename_s;
EverParse3d.ErrorCode.fieldname = fieldname;
EverParse3d.ErrorCode.reason = reason;
EverParse3d.ErrorCode.error_code = error_code
} | false |
LowParse.BitFields.fst | LowParse.BitFields.bitfield_mask_eq | val bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot})
: Lemma
(0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo) | val bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot})
: Lemma
(0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo) | let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 60,
"end_line": 30,
"start_col": 0,
"start_line": 15
} | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | tot: Prims.pos -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot}
-> FStar.Pervasives.Lemma
(ensures
0 <= Prims.pow2 (hi - lo) - 1 /\ Prims.pow2 (hi - lo) - 1 < Prims.pow2 tot /\
LowParse.BitFields.bitfield_mask tot lo hi ==
FStar.UInt.shift_left (Prims.pow2 (hi - lo) - 1) lo) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Math.Lemmas.modulo_lemma",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.unit",
"FStar.Math.Lemmas.swap_mul",
"LowParse.Math.lemma_mult_lt'",
"LowParse.Math.lemma_mult_nat",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.pow2_le_compat",
"FStar.UInt.shift_left_value_lemma",
"Prims.l_True",
"Prims.squash",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.UInt.uint_t",
"LowParse.BitFields.bitfield_mask",
"FStar.UInt.shift_left",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot})
: Lemma
(0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo) =
| M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) | false |
LowParse.Low.BCVLI.fst | LowParse.Low.BCVLI.validate_bounded_bcvli' | val validate_bounded_bcvli' (min32: U32.t) (max32: U32.t{U32.v min32 <= U32.v max32})
: Tot (validator (parse_bounded_bcvli (U32.v min32) (U32.v max32))) | val validate_bounded_bcvli' (min32: U32.t) (max32: U32.t{U32.v min32 <= U32.v max32})
: Tot (validator (parse_bounded_bcvli (U32.v min32) (U32.v max32))) | let validate_bounded_bcvli'
(min32: U32.t)
(max32: U32.t { U32.v min32 <= U32.v max32 })
: Tot (validator (parse_bounded_bcvli (U32.v min32) (U32.v max32)))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts (parse_bounded_bcvli (U32.v min32) (U32.v max32)) h input (uint64_to_uint32 pos);
parse_bounded_bcvli_eq (U32.v min32) (U32.v max32) (bytes_of_slice_from h input (uint64_to_uint32 pos));
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul && min32 `U32.lte` r && r `U32.lte` max32
then pos1
else if max32 `U32.lt` 253ul
then validator_error_generic
else if r = 253ul
then
if 65536ul `U32.lte` min32
then validator_error_generic
else
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else if max32 `U32.lt` 65536ul
then validator_error_generic
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else validator_error_generic | {
"file_name": "src/lowparse/LowParse.Low.BCVLI.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 32,
"end_line": 231,
"start_col": 0,
"start_line": 179
} | module LowParse.Low.BCVLI
include LowParse.Spec.BCVLI
include LowParse.Low.Combinators
include LowParse.Low.BoundedInt
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module Cast = FStar.Int.Cast
module U32 = FStar.UInt32
module U64 = FStar.UInt64
#reset-options "--z3cliopt smt.arith.nl=false --max_fuel 0"
#push-options "--z3rlimit 16"
let validate_bcvli : validator parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input (uint64_to_uint32 pos);
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul
then validator_error_generic
else pos2
else if r = 254ul
then
let pos2 = validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1 in
if is_error pos2
then pos2
else
(* because of the non-malleability constraint, I need to actually read the value and check whether it is not a lower integer *)
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul
then validator_error_generic
else pos2
else validator_error_generic
let jump_bcvli : jumper parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then pos1
else if r = 253ul
then
jump_constant_size (parse_bounded_integer_le 2) 2ul () input pos1
else
jump_constant_size (parse_bounded_integer_le 4) 4ul () input pos1
let read_bcvli : leaf_reader parse_bcvli =
fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
valid_facts parse_bcvli h input pos;
parse_bcvli_eq (bytes_of_slice_from h input pos);
valid_facts (parse_bounded_integer_le 1) h input pos
in
let r = read_bounded_integer_le_1 input pos in
if r `U32.lt` 253ul
then (r <: U32.t)
else
let pos1 = jump_constant_size (parse_bounded_integer_le 1) 1ul () input pos in
[@inline_let] let _ =
valid_facts (parse_bounded_integer_le 2) h input pos1;
valid_facts (parse_bounded_integer_le 4) h input pos1
in
if r = 253ul
then read_bounded_integer_le_2 input pos1 <: U32.t
else read_bounded_integer_le_4 input pos1 <: U32.t
#pop-options
module U8 = FStar.UInt8
#push-options "--z3rlimit 32"
inline_for_extraction
let serialize32_bcvli'
(x: U32.t)
(#rrel #rel: _)
(b: B.mbuffer U8.t rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
let len = Seq.length (serialize serialize_bcvli x) in
B.live h b /\
U32.v pos + len <= B.length b /\
writable b (U32.v pos) (U32.v pos + len) h
))
(ensures (fun h len h' ->
Seq.length (serialize serialize_bcvli x) == U32.v len /\ (
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` len)) h h' /\
B.live h b /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v len) `Seq.equal` serialize serialize_bcvli x
)))
= // [@inline_let] let _ =
serialize_bcvli_eq x
; // in
let c : bounded_integer 1 =
if x `U32.lt` 253ul
then x
else if x `U32.lt` 65536ul
then 253ul
else 254ul
in
[@inline_let]
let pos' = Ghost.hide (U32.v pos + Seq.length (serialize serialize_bcvli x)) in
let h = HST.get () in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h (U32.v pos) (U32.v pos + 1) in
let len1 = serialize32_bounded_integer_le_1 c b pos in
let h1 = HST.get () in
[@inline_let]
let _ = writable_modifies b (U32.v pos) (Ghost.reveal pos') h B.loc_none h1 in
if c `U32.lt` 253ul
then begin
len1
end else if c = 253ul
then begin
[@inline_let]
let _ = assert (U32.v x < 65536) in
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 2) in
let len2 = serialize32_bounded_integer_le_2 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end else begin
[@inline_let]
let _ = writable_weaken b (U32.v pos) (Ghost.reveal pos') h1 (U32.v pos + U32.v len1) ((U32.v pos + U32.v len1) + 4) in
let len2 = serialize32_bounded_integer_le_4 x b (pos `U32.add` len1) in
let h' = HST.get () in
[@inline_let]
let len = len1 `U32.add` len2 in
B.modifies_buffer_from_to_elim b pos (pos `U32.add` len1) (B.loc_buffer_from_to b (pos `U32.add` len1) (pos `U32.add` len)) h1 h';
len
end
inline_for_extraction
let serialize32_bcvli : serializer32 serialize_bcvli =
fun (x: U32.t) #rrel #rel b pos -> serialize32_bcvli' x b pos
let write_bcvli : leaf_writer_strong serialize_bcvli =
leaf_writer_strong_of_serializer32 serialize32_bcvli () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.BCVLI.fsti.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.BoundedInt.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BCVLI.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BCVLI",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | min32: FStar.UInt32.t -> max32: FStar.UInt32.t{FStar.UInt32.v min32 <= FStar.UInt32.v max32}
-> LowParse.Low.Base.validator (LowParse.Spec.BCVLI.parse_bounded_bcvli (FStar.UInt32.v min32)
(FStar.UInt32.v max32)) | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.Low.ErrorCode.is_error",
"Prims.bool",
"Prims.op_AmpAmp",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.lte",
"LowParse.Low.ErrorCode.validator_error_generic",
"Prims.op_Equality",
"Prims.op_BarBar",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Low.BoundedInt.read_bounded_integer_le_2",
"LowParse.Low.ErrorCode.uint64_to_uint32",
"LowParse.Low.Base.validate_total_constant_size",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.parse_bounded_integer_le",
"FStar.UInt64.__uint_to_t",
"LowParse.Low.BoundedInt.read_bounded_integer_le_4",
"LowParse.Low.BoundedInt.read_bounded_integer_le_1",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.BCVLI.parse_bcvli_eq",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.BCVLI.parse_bounded_bcvli_eq",
"LowParse.Spec.BCVLI.parse_bounded_bcvli_kind",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.BCVLI.parse_bounded_bcvli",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowParse.Low.Base.validator"
] | [] | false | false | false | false | false | let validate_bounded_bcvli' (min32: U32.t) (max32: U32.t{U32.v min32 <= U32.v max32})
: Tot (validator (parse_bounded_bcvli (U32.v min32) (U32.v max32))) =
| fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ =
valid_facts (parse_bounded_bcvli (U32.v min32) (U32.v max32)) h input (uint64_to_uint32 pos);
parse_bounded_bcvli_eq (U32.v min32)
(U32.v max32)
(bytes_of_slice_from h input (uint64_to_uint32 pos));
parse_bcvli_eq (bytes_of_slice_from h input (uint64_to_uint32 pos));
valid_facts (parse_bounded_integer_le 1) h input (uint64_to_uint32 pos)
in
let pos1 = validate_total_constant_size (parse_bounded_integer_le 1) 1uL () input pos in
if is_error pos1
then pos1
else
[@@ inline_let ]let _ =
valid_facts (parse_bounded_integer_le 2) h input (uint64_to_uint32 pos1);
valid_facts (parse_bounded_integer_le 4) h input (uint64_to_uint32 pos1)
in
let r = read_bounded_integer_le_1 input (uint64_to_uint32 pos) in
if r `U32.lt` 253ul && min32 `U32.lte` r && r `U32.lte` max32
then pos1
else
if max32 `U32.lt` 253ul
then validator_error_generic
else
if r = 253ul
then
if 65536ul `U32.lte` min32
then validator_error_generic
else
let pos2 =
validate_total_constant_size (parse_bounded_integer_le 2) 2uL () input pos1
in
if is_error pos2
then pos2
else
let r = read_bounded_integer_le_2 input (uint64_to_uint32 pos1) in
if r `U32.lt` 253ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else
if max32 `U32.lt` 65536ul
then validator_error_generic
else
if r = 254ul
then
let pos2 =
validate_total_constant_size (parse_bounded_integer_le 4) 4uL () input pos1
in
if is_error pos2
then pos2
else
let r = read_bounded_integer_le_4 input (uint64_to_uint32 pos1) in
if r `U32.lt` 65536ul || r `U32.lt` min32 || max32 `U32.lt` r
then validator_error_generic
else pos2
else validator_error_generic | false |
MerkleTree.Low.Datastructures.fst | MerkleTree.Low.Datastructures.hash_vv_rv_inv_disjoint | val hash_vv_rv_inv_disjoint:
#hsz:hash_size_t ->
h:HS.mem -> hvv:hash_vv hsz ->
i:uint32_t -> j:uint32_t -> drid:HH.rid ->
Lemma (requires (RV.rv_inv h hvv /\
i < V.size_of hvv /\
j < V.size_of (V.get h hvv i) /\
HH.disjoint (Rgl?.region_of (hvvreg hsz) hvv) drid))
(ensures (HH.disjoint (Rgl?.region_of (hreg hsz) (V.get h (V.get h hvv i) j)) drid)) | val hash_vv_rv_inv_disjoint:
#hsz:hash_size_t ->
h:HS.mem -> hvv:hash_vv hsz ->
i:uint32_t -> j:uint32_t -> drid:HH.rid ->
Lemma (requires (RV.rv_inv h hvv /\
i < V.size_of hvv /\
j < V.size_of (V.get h hvv i) /\
HH.disjoint (Rgl?.region_of (hvvreg hsz) hvv) drid))
(ensures (HH.disjoint (Rgl?.region_of (hreg hsz) (V.get h (V.get h hvv i) j)) drid)) | let hash_vv_rv_inv_disjoint #hsz h hvv i j drid =
assert (HH.disjoint (Rgl?.region_of (hvreg hsz) (V.get h hvv i)) drid);
assert (RV.rv_inv h (V.get h hvv i));
assert (HH.disjoint (Rgl?.region_of (hreg hsz) (V.get h (V.get h hvv i) j)) drid) | {
"file_name": "src/MerkleTree.Low.Datastructures.fst",
"git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | {
"end_col": 83,
"end_line": 354,
"start_col": 0,
"start_line": 351
} | module MerkleTree.Low.Datastructures
open FStar.All
open FStar.Integers
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open LowStar.Vector
open LowStar.Regional
open LowStar.RVector
open LowStar.Regional.Instances
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module MHS = FStar.Monotonic.HyperStack
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module CB = LowStar.ConstBuffer
module V = LowStar.Vector
module RV = LowStar.RVector
module RVI = LowStar.Regional.Instances
module S = FStar.Seq
module EHS = EverCrypt.Hash
module U32 = FStar.UInt32
module MTH = MerkleTree.New.High
open EverCrypt.Helpers
open Lib.IntTypes
#set-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
type hash_size_t = n:uint32_t{n > 0ul}
type hash (#hsz:hash_size_t) = b:B.buffer uint8 { B.len b = hsz \/ B.g_is_null b }
// We cannot use `Low.RVector.Instances`, where we have some general
// typeclass instances of `regional`, e.g., if `rg:regional a` then
// `regional (rvector rg)`. In FStar we can use this, but KaRaMeL currently
// cannot deal with this and gives a number of errors.
// So we temporarily instantiate some `regional`s manually below, which is
// extractable to C by KaRaMeL.
/// Some instantiations of `regional` used in Merkle tree
/// 1. `hash` is regional
private
noextract
val hash_region_of: #hsz:hash_size_t -> v:hash #hsz -> GTot HH.rid
let hash_region_of #_ v = B.frameOf v
private inline_for_extraction
val hash_dummy: #hsz:Ghost.erased hash_size_t -> Tot (hash #hsz)
let hash_dummy #_ = B.null
private
noextract
val hash_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash #hsz -> GTot Type0
let hash_r_inv #hsz h v =
B.live h v /\ B.freeable v /\
B.len v = hsz
private
noextract
val hash_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash ->
Lemma (requires hash_r_inv h v)
(ensures MHS.live_region h (hash_region_of #hsz v))
let hash_r_inv_reg #_ h v = ()
private
noextract
val hash_repr (#hsz:hash_size_t): Type0
let hash_repr #hsz = MTH.hash #(U32.v hsz)
private
noextract
val hash_r_repr: #hsz:hash_size_t -> h:HS.mem -> v:hash{hash_r_inv #hsz h v} -> GTot (hash_repr #hsz)
let hash_r_repr #_ h v = B.as_seq h v
private
noextract
val hash_r_sep:
#hsz:hash_size_t ->
v:hash #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires
hash_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false
(hash_region_of v)) p /\
modifies p h0 h1)
(ensures
hash_r_inv h1 v /\
hash_r_repr h0 v == hash_r_repr h1 v)
let hash_r_sep #_ v p h0 h1 =
assert (loc_includes (loc_all_regions_from false (hash_region_of v))
(loc_buffer v));
B.modifies_buffer_elim v p h0 h1
private
noextract
val hash_irepr: #hsz:hash_size_t -> Ghost.erased (hash_repr #hsz)
let hash_irepr #hsz =
Ghost.hide (S.create (U32.v hsz) (u8 0))
private
noextract
val hash_r_alloc_p: #hsz:hash_size_t -> v:hash #hsz -> GTot Type0
let hash_r_alloc_p #_ v = True
val hash_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_r_alloc_p #hsz v /\
hash_r_inv h1 v /\
hash_region_of v = r /\
hash_r_repr h1 v == Ghost.reveal hash_irepr /\
B.fresh_loc (B.loc_buffer v) h0 h1))
let hash_r_alloc #_ s r =
B.malloc r (u8 0) s
val hash_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash #hsz' ->
HST.ST unit
(requires fun h0 -> hash_r_inv h0 v)
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of v)) h0 h1)
let hash_r_free #_ _ v =
B.free v
noextract inline_for_extraction
val hreg (hsz:hash_size_t): regional (hash_size_t) (hash #hsz)
let hreg hsz =
Rgl #(hash_size_t) #(hash #hsz) hsz
(hash_region_of #hsz)
(B.loc_buffer)
(hash_dummy #hsz)
(hash_r_inv #hsz)
(hash_r_inv_reg #hsz)
(hash_repr #hsz)
(hash_r_repr #hsz)
(hash_r_sep #hsz)
(hash_irepr #hsz)
(hash_r_alloc_p #hsz)
(hash_r_alloc #hsz)
(hash_r_free #hsz)
private
val hash_copy:
#s':Ghost.erased hash_size_t ->
s:hash_size_t { s == Ghost.reveal s' } ->
src:hash #s -> dst:hash #s ->
HST.ST unit
(requires fun h0 ->
hash_r_inv h0 src /\ hash_r_inv h0 dst /\
HH.disjoint (hash_region_of src) (hash_region_of dst))
(ensures fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_region_of dst)) h0 h1 /\
hash_r_inv h1 dst /\
hash_r_repr h1 dst == hash_r_repr h0 src)
let hash_copy #_ s src dst =
B.blit src 0ul dst 0ul s
/// JP: so much stuff happening here. First, single-constructor, single-argument
/// elimination takes places and Cpy becomes completely eliminated, in favor of
/// just being a type alias for the underlying function. So now, we have a
/// function that returns a function pointer.
///
/// Next, one might think that the hsz argument is going to be eliminated. It's
/// not, because there's a hidden implicit argument to Cpy which is (hreg hsz),
/// meaning that hsz is used at run-time even though Cpy is only using this
/// argument ghostly. This would be have to be fixed.
///
/// Finally, if the inline_for_extraction is removed, there seems to be a
/// karamel bug that inserts a void*0. To be fixed.
inline_for_extraction
val hcpy: hsz:hash_size_t -> copyable #hash_size_t (hash #hsz) (hreg hsz)
let hcpy hsz =
Cpy (hash_copy #hsz)
type hash_vec (#hsz:hash_size_t) = RV.rvector (hreg hsz)
/// 2. `rvector hash` is regional
type rhst (hsz:hash_size_t) = regional hash_size_t (hash #hsz)
private
noextract
val hash_vec_region_of: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot HH.rid
let hash_vec_region_of #_ v = V.frameOf v
private inline_for_extraction
val hash_vec_dummy: (#hsz:Ghost.erased hash_size_t) -> hash_vec #hsz
let hash_vec_dummy #_ = V.alloc_empty (hash #_)
noextract
val hash_vec_r_inv: #hsz:hash_size_t -> h:HS.mem -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_inv #hsz h v = RV.rv_inv h v
noextract
val hash_vec_r_inv_reg:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz ->
Lemma (requires (hash_vec_r_inv h v))
(ensures (MHS.live_region h (hash_vec_region_of v)))
let hash_vec_r_inv_reg #_ h v = ()
private
noextract
val hash_vec_repr: #hsz:hash_size_t -> Type0
let hash_vec_repr #hsz = MTH.hashes #(U32.v hsz)
noextract
val hash_vec_r_repr:
#hsz:hash_size_t ->
h:HS.mem -> v:hash_vec #hsz {hash_vec_r_inv h v} -> GTot (hash_vec_repr #hsz)
let hash_vec_r_repr #_ h v =
RV.as_seq h v
noextract
val hash_vec_r_sep:
#hsz:hash_size_t ->
v:hash_vec #hsz -> p:loc -> h0:HS.mem -> h1:HS.mem ->
Lemma (requires (hash_vec_r_inv h0 v /\
loc_disjoint
(loc_all_regions_from false (hash_vec_region_of v))
p /\
modifies p h0 h1))
(ensures (hash_vec_r_inv h1 v /\
hash_vec_r_repr h0 v == hash_vec_r_repr h1 v))
let hash_vec_r_sep #_ v p h0 h1 =
RV.rv_inv_preserved v p h0 h1;
RV.as_seq_preserved v p h0 h1
noextract
val hash_vec_irepr: #hsz:hash_size_t -> Ghost.erased (hash_vec_repr #hsz)
let hash_vec_irepr #_ = Ghost.hide S.empty
noextract
val hash_vec_r_alloc_p: #hsz:hash_size_t -> v:hash_vec #hsz -> GTot Type0
let hash_vec_r_alloc_p #_ v = V.size_of v = 0ul
#push-options "--initial_fuel 1 --max_fuel 1"
val hash_vec_r_alloc:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
r:HST.erid ->
HST.ST (hash_vec #hsz)
(requires (fun h0 -> true))
(ensures (fun h0 v h1 ->
Set.subset (Map.domain (MHS.get_hmap h0))
(Map.domain (MHS.get_hmap h1)) /\
modifies loc_none h0 h1 /\
hash_vec_r_alloc_p v /\
hash_vec_r_inv h1 v /\
hash_vec_region_of v = r /\
hash_vec_r_repr h1 v == Ghost.reveal hash_vec_irepr /\
B.fresh_loc (V.loc_vector v) h0 h1))
let hash_vec_r_alloc #_ hsz r =
let nrid = HST.new_region r in
// Note: here we are not creating a generic parameterized regional, we are
// creating a specialized regional vector of hashes, so we don't need to go
// through a run-time indirection to figure out what the dummy default element
// is; we know it's the one for hashes
V.alloc_reserve 1ul (hash_dummy #hsz) r
#pop-options
val hash_vec_r_free:
#hsz':Ghost.erased hash_size_t ->
hsz:hash_size_t { hsz == Ghost.reveal hsz' } ->
v:hash_vec #hsz ->
HST.ST unit
(requires (fun h0 -> hash_vec_r_inv h0 v))
(ensures (fun h0 _ h1 ->
modifies (loc_all_regions_from false (hash_vec_region_of #hsz v)) h0 h1))
let hash_vec_r_free #_ hsz v =
RV.free v
/// This is nice because the only piece of state that we are keeping is one
/// word, the hash size, since we are implementing a specialized instance of
/// RVector over hashes of a known length. We could also, for genericity, make
/// this a mere application of RVector over hreg, which would be less
/// implementation effort, at the expense of a bigger run-time cost since there
/// would be extra space in the struct (which is passed by value!) and also a
/// run-time indirection to do the lookup of the type class instance for the
/// elements of the rvector.
noextract inline_for_extraction
val hvreg (hsz:hash_size_t): regional hash_size_t (hash_vec #hsz)
let hvreg hsz =
Rgl hsz
(hash_vec_region_of #hsz)
V.loc_vector
(hash_vec_dummy #hsz)
(hash_vec_r_inv #hsz)
(hash_vec_r_inv_reg #hsz)
(hash_vec_repr #hsz)
(hash_vec_r_repr #hsz)
(hash_vec_r_sep #hsz)
(hash_vec_irepr #hsz)
(hash_vec_r_alloc_p #hsz)
(hash_vec_r_alloc #hsz)
(hash_vec_r_free #hsz)
/// 3. A vector of hash vectors is also regional
type hash_vv (hsz:hash_size_t) = RV.rvector (hvreg hsz)
noextract inline_for_extraction
val hvvreg (hsz:hash_size_t): regional (regional hash_size_t (hash_vec #hsz)) (hash_vv hsz)
let hvvreg hsz = RVI.vector_regional (hvreg hsz)
val hash_vec_rv_inv_r_inv:
#hsz:hash_size_t ->
h:HS.mem -> hv:hash_vec #hsz -> i:uint32_t{i < V.size_of hv} ->
Lemma (requires RV.rv_inv h hv)
(ensures Rgl?.r_inv (hreg hsz) h (V.get h hv i))
let hash_vec_rv_inv_r_inv #_ h hv i = ()
val hash_vv_rv_inv_r_inv:
#hsz:hash_size_t ->
h:HS.mem -> hvv:hash_vv hsz ->
i:uint32_t -> j:uint32_t ->
Lemma (requires RV.rv_inv h hvv /\
i < V.size_of hvv /\
j < V.size_of (V.get h hvv i))
(ensures Rgl?.r_inv (hvreg hsz) h (V.get h hvv i) /\
Rgl?.r_inv (hreg hsz) h (V.get h (V.get h hvv i) j))
let hash_vv_rv_inv_r_inv #_ h hvv i j = ()
val hash_vv_rv_inv_disjoint:
#hsz:hash_size_t ->
h:HS.mem -> hvv:hash_vv hsz ->
i:uint32_t -> j:uint32_t -> drid:HH.rid ->
Lemma (requires (RV.rv_inv h hvv /\
i < V.size_of hvv /\
j < V.size_of (V.get h hvv i) /\
HH.disjoint (Rgl?.region_of (hvvreg hsz) hvv) drid)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"LowStar.Vector.fst.checked",
"LowStar.RVector.fst.checked",
"LowStar.Regional.Instances.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.ConstBuffer.fsti.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.HyperStack.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.All.fst.checked",
"EverCrypt.Helpers.fsti.checked",
"EverCrypt.Hash.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.Low.Datastructures.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt.Helpers",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Regional.Instances",
"short_module": "RVI"
},
{
"abbrev": true,
"full_module": "LowStar.RVector",
"short_module": "RV"
},
{
"abbrev": true,
"full_module": "LowStar.Vector",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "LowStar.ConstBuffer",
"short_module": "CB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperStack",
"short_module": "MHS"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Regional.Instances",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.RVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Vector",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h: FStar.Monotonic.HyperStack.mem ->
hvv: MerkleTree.Low.Datastructures.hash_vv hsz ->
i: EverCrypt.Helpers.uint32_t ->
j: EverCrypt.Helpers.uint32_t ->
drid: FStar.Monotonic.HyperHeap.rid
-> FStar.Pervasives.Lemma
(requires
LowStar.RVector.rv_inv h hvv /\ i < LowStar.Vector.size_of hvv /\
j < LowStar.Vector.size_of (LowStar.Vector.get h hvv i) /\
FStar.Monotonic.HyperHeap.disjoint (Rgl?.region_of (MerkleTree.Low.Datastructures.hvvreg hsz
)
hvv)
drid)
(ensures
FStar.Monotonic.HyperHeap.disjoint (Rgl?.region_of (MerkleTree.Low.Datastructures.hreg hsz)
(LowStar.Vector.get h (LowStar.Vector.get h hvv i) j))
drid) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"FStar.Monotonic.HyperStack.mem",
"MerkleTree.Low.Datastructures.hash_vv",
"EverCrypt.Helpers.uint32_t",
"FStar.Monotonic.HyperHeap.rid",
"Prims._assert",
"Prims.b2t",
"FStar.Monotonic.HyperHeap.disjoint",
"LowStar.Regional.__proj__Rgl__item__region_of",
"MerkleTree.Low.Datastructures.hash",
"MerkleTree.Low.Datastructures.hreg",
"LowStar.Vector.get",
"MerkleTree.Low.Datastructures.hash_vec",
"Prims.unit",
"LowStar.RVector.rv_inv",
"MerkleTree.Low.Datastructures.hvreg"
] | [] | true | false | true | false | false | let hash_vv_rv_inv_disjoint #hsz h hvv i j drid =
| assert (HH.disjoint (Rgl?.region_of (hvreg hsz) (V.get h hvv i)) drid);
assert (RV.rv_inv h (V.get h hvv i));
assert (HH.disjoint (Rgl?.region_of (hreg hsz) (V.get h (V.get h hvv i) j)) drid) | false |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.