file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
LowParse.BitFields.fst
LowParse.BitFields.nth_pow2_minus_one
val nth_pow2_minus_one (#n: pos) (m: nat{m <= n}) (i: nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m))))
val nth_pow2_minus_one (#n: pos) (m: nat{m <= n}) (i: nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m))))
let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 78, "start_col": 0, "start_line": 71 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.nat{m <= n} -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures Prims.pow2 m <= Prims.pow2 n /\ LowParse.BitFields.nth (Prims.pow2 m - 1) i == (i < m))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.BitFields.nth_pow2_minus_one'", "Prims.op_Subtraction", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.pow2", "Prims.eq2", "Prims.bool", "LowParse.BitFields.nth", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let nth_pow2_minus_one (#n: pos) (m: nat{m <= n}) (i: nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) =
nth_pow2_minus_one' #n m (n - 1 - i)
false
LowParse.BitFields.fst
LowParse.BitFields.nth
val nth (#n: pos) (a: U.uint_t n) (i: nat{i < n}) : Tot bool
val nth (#n: pos) (a: U.uint_t n) (i: nat{i < n}) : Tot bool
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 21, "end_line": 49, "start_col": 0, "start_line": 48 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> i: Prims.nat{i < n} -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt.nth", "Prims.op_Subtraction", "Prims.bool" ]
[]
false
false
false
false
false
let nth (#n: pos) (a: U.uint_t n) (i: nat{i < n}) : Tot bool =
U.nth a (n - 1 - i)
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_mask
val bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot)
val bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot)
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 49, "end_line": 13, "start_col": 0, "start_line": 8 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot: Prims.pos -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.UInt.uint_t tot
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Pervasives.normalize_term", "FStar.UInt.uint_t", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.pow2_le_compat" ]
[]
false
false
false
false
false
let bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
[@@ inline_let ]let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
false
LowParse.BitFields.fst
LowParse.BitFields.eq_nth
val eq_nth (#n: pos) (a b: U.uint_t n) (f: (i: nat{i < n} -> Lemma (nth a i == nth b i))) : Lemma (a == b)
val eq_nth (#n: pos) (a b: U.uint_t n) (f: (i: nat{i < n} -> Lemma (nth a i == nth b i))) : Lemma (a == b)
let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 17, "end_line": 69, "start_col": 0, "start_line": 51 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> f: (i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.nth a i == LowParse.BitFields.nth b i)) -> FStar.Pervasives.Lemma (ensures a == b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.bool", "LowParse.BitFields.nth", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.UInt.nth_lemma", "FStar.Classical.forall_intro", "FStar.UInt.nth", "Prims.op_Subtraction" ]
[]
false
false
true
false
false
let eq_nth (#n: pos) (a b: U.uint_t n) (f: (i: nat{i < n} -> Lemma (nth a i == nth b i))) : Lemma (a == b) =
let g (i: nat{i < n}) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b
false
LowParse.BitFields.fst
LowParse.BitFields.nth_bitfield_mask
val nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
val nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 7, "end_line": 106, "start_col": 0, "start_line": 98 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot: Prims.pos -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> i: Prims.nat{i < tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.nth (LowParse.BitFields.bitfield_mask tot lo hi) i == (lo <= i && i < hi))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.bool", "LowParse.BitFields.nth_pow2_minus_one", "Prims.op_Subtraction", "Prims.unit", "LowParse.BitFields.nth_shift_left", "Prims.pow2", "LowParse.BitFields.bitfield_mask_eq", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.BitFields.nth", "LowParse.BitFields.bitfield_mask", "Prims.op_AmpAmp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) =
bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else nth_pow2_minus_one #tot (hi - lo) (i - lo)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_raw
val get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot)
val get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot)
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 59, "end_line": 109, "start_col": 0, "start_line": 108 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.UInt.uint_t tot
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt.shift_right", "FStar.UInt.logand", "LowParse.BitFields.bitfield_mask" ]
[]
false
false
false
false
false
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` (bitfield_mask tot lo hi)) `U.shift_right` lo
false
LowParse.BitFields.fst
LowParse.BitFields.nth_pow2_minus_one'
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 46, "end_line": 44, "start_col": 0, "start_line": 38 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.nat{m <= n} -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures Prims.pow2 m <= Prims.pow2 n /\ (i < n - m ==> FStar.UInt.nth (Prims.pow2 m - 1) i == false) /\ (n - m <= i ==> FStar.UInt.nth (Prims.pow2 m - 1) i == true))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "FStar.UInt.one_to_vec_lemma", "Prims.bool", "Prims.l_or", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "FStar.UInt.ones_to_vec_lemma", "Prims.op_Subtraction", "LowParse.BitFields.nth_pow2_minus_one'", "Prims.unit", "FStar.Math.Lemmas.pow2_le_compat", "Prims.pow2" ]
[ "recursion" ]
false
false
true
false
false
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i
false
LowParse.BitFields.fst
LowParse.BitFields.nth_get_bitfield
val nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
val nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 32, "end_line": 210, "start_col": 0, "start_line": 208 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> i: Prims.nat{i < tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.nth (LowParse.BitFields.get_bitfield x lo hi) i == (i < hi - lo && LowParse.BitFields.nth x (i + lo)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.BitFields.nth_get_bitfield_raw", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.bool", "LowParse.BitFields.nth", "LowParse.BitFields.get_bitfield", "Prims.op_AmpAmp", "Prims.op_Subtraction", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) =
nth_get_bitfield_raw x lo hi i
false
LowParse.BitFields.fst
LowParse.BitFields.nth_le_pow2_m
val nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat{m <= n}) (i: nat{i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false))
val nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat{m <= n}) (i: nat{i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false))
let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 29, "end_line": 192, "start_col": 0, "start_line": 181 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> m: Prims.nat{m <= n} -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (requires a < Prims.pow2 m /\ m <= i) (ensures LowParse.BitFields.nth a i == false)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.BitFields.nth_logand", "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "LowParse.BitFields.nth_pow2_minus_one", "FStar.Math.Lemmas.modulo_lemma", "LowParse.BitFields.logand_mask", "Prims.l_and", "Prims.squash", "Prims.eq2", "Prims.bool", "LowParse.BitFields.nth", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat{m <= n}) (i: nat{i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) =
logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i
false
LowParse.BitFields.fst
LowParse.BitFields.nth_get_bitfield_raw
val nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
val nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else ()
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 6, "end_line": 143, "start_col": 0, "start_line": 135 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> i: Prims.nat{i < tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.nth (LowParse.BitFields.get_bitfield_raw x lo hi) i == (i < hi - lo && LowParse.BitFields.nth x (i + lo)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "LowParse.BitFields.nth_bitfield_mask", "Prims.unit", "LowParse.BitFields.nth_logand", "LowParse.BitFields.bitfield_mask", "Prims.bool", "LowParse.BitFields.nth_shift_right", "FStar.UInt.logand", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.BitFields.nth", "LowParse.BitFields.get_bitfield_raw", "Prims.op_AmpAmp", "Prims.op_Subtraction", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) =
nth_shift_right (x `U.logand` (bitfield_mask tot lo hi)) lo i; if i + lo < tot then (nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo))
false
LowParse.BitFields.fst
LowParse.BitFields.nth_not_bitfield_mask
val nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
val nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 31, "end_line": 295, "start_col": 0, "start_line": 292 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot: Prims.pos -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> i: Prims.nat{i < tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.nth (LowParse.BitFields.not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.BitFields.nth_bitfield_mask", "Prims.unit", "LowParse.BitFields.nth_lognot", "LowParse.BitFields.bitfield_mask", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.bool", "LowParse.BitFields.nth", "LowParse.BitFields.not_bitfield_mask", "Prims.op_BarBar", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (i: nat{i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) =
nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_raw_bounded
val get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo))
val get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo))
let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo))
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 35, "end_line": 200, "start_col": 0, "start_line": 194 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield_raw x lo hi < Prims.pow2 (hi - lo))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Math.Lemmas.lemma_mod_lt", "Prims.pow2", "Prims.op_Subtraction", "Prims.unit", "LowParse.BitFields.logand_mask", "LowParse.BitFields.get_bitfield_raw", "LowParse.BitFields.get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one", "Prims.l_True", "Prims.squash", "Prims.op_LessThan", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) =
get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo))
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_mask_mod_pow2_lo
val bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (m: nat{m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0)
val bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (m: nat{m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0)
let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 64, "end_line": 262, "start_col": 0, "start_line": 258 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot: Prims.pos -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> m: Prims.nat{m <= lo} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.bitfield_mask tot lo hi % Prims.pow2 m == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1", "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "LowParse.BitFields.bitfield_mask", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (m: nat{m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) =
M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield
val set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot)
val set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot)
let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 76, "end_line": 301, "start_col": 0, "start_line": 297 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> v: LowParse.BitFields.ubitfield tot (hi - lo) -> FStar.UInt.uint_t tot
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "FStar.UInt.logor", "FStar.UInt.logand", "LowParse.BitFields.not_bitfield_mask", "FStar.UInt.shift_left" ]
[]
false
false
false
false
false
let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) =
(x `U.logand` (not_bitfield_mask tot lo hi)) `U.logor` (v `U.shift_left` lo)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield
val get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo))
val get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo))
let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 26, "end_line": 206, "start_col": 0, "start_line": 202 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> LowParse.BitFields.ubitfield tot (hi - lo)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.get_bitfield_raw", "Prims.unit", "LowParse.BitFields.get_bitfield_raw_bounded", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction" ]
[]
false
false
false
false
false
let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) =
get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one
val get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1))
val get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1))
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 156, "start_col": 0, "start_line": 145 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures (let y = LowParse.BitFields.get_bitfield_raw x lo hi in Prims.pow2 (hi - lo) - 1 < Prims.pow2 tot /\ y == FStar.UInt.logand y (Prims.pow2 (hi - lo) - 1)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.eq_nth", "FStar.UInt.logand", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_LessThan", "LowParse.BitFields.nth_logand", "Prims.unit", "LowParse.BitFields.nth_pow2_minus_one", "LowParse.BitFields.nth_get_bitfield_raw", "LowParse.BitFields.get_bitfield_raw", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1)) =
nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i)
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_mask_lt_pow2_hi
val bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (bitfield_mask tot lo hi < pow2 hi)
val bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (bitfield_mask tot lo hi < pow2 hi)
let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 28, "end_line": 270, "start_col": 0, "start_line": 264 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot: Prims.pos -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.bitfield_mask tot lo hi < Prims.pow2 hi)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.pow2_le_compat", "Prims.l_True", "Prims.squash", "Prims.op_LessThan", "LowParse.BitFields.bitfield_mask", "Prims.pow2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (bitfield_mask tot lo hi < pow2 hi) =
M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo
false
LowParse.BitFields.fst
LowParse.BitFields.not_bitfield_mask
val not_bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
val not_bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 24, "end_line": 290, "start_col": 0, "start_line": 273 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot: Prims.pos -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> x: FStar.UInt.uint_t tot {x == FStar.UInt.lognot (LowParse.BitFields.bitfield_mask tot lo hi)}
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Pervasives.normalize_term", "FStar.UInt.uint_t", "Prims.eq2", "FStar.UInt.lognot", "LowParse.BitFields.bitfield_mask", "Prims.op_Addition", "Prims.unit", "LowParse.BitFields.eq_nth", "FStar.UInt.logor", "Prims.op_LessThan", "LowParse.BitFields.nth_bitfield_mask", "LowParse.BitFields.logor_disjoint", "LowParse.BitFields.bitfield_mask_lt_pow2_hi", "LowParse.BitFields.bitfield_mask_mod_pow2_lo" ]
[]
false
false
false
false
false
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) =
[@@ inline_let ]let a = bitfield_mask tot hi tot in [@@ inline_let ]let b = bitfield_mask tot 0 lo in [@@ inline_let ]let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i) in normalize_term (a + b)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_logor
val get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
val get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 220, "start_col": 0, "start_line": 212 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> y: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield (FStar.UInt.logor x y) lo hi == FStar.UInt.logor (LowParse.BitFields.get_bitfield x lo hi) (LowParse.BitFields.get_bitfield y lo hi))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "FStar.UInt.logor", "Prims.op_LessThan", "LowParse.BitFields.nth_get_bitfield", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == (get_bitfield x lo hi) `U.logor` (get_bitfield y lo hi)) =
eq_nth (get_bitfield (x `U.logor` y) lo hi) ((get_bitfield x lo hi) `U.logor` (get_bitfield y lo hi)) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_zero
val get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0)
val get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0)
let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 422, "start_col": 0, "start_line": 412 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot: Prims.pos -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield 0 lo hi == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "Prims.op_LessThan", "Prims.op_Subtraction", "LowParse.BitFields.nth_zero", "Prims.op_Addition", "Prims.bool", "Prims.unit", "LowParse.BitFields.nth_get_bitfield", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield #tot 0 lo hi == 0) =
eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo))
false
LowParse.BitFields.fst
LowParse.BitFields.nth_set_bitfield
val nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) (i: nat{i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
val nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) (i: nat{i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 71, "end_line": 328, "start_col": 0, "start_line": 303 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> v: LowParse.BitFields.ubitfield tot (hi - lo) -> i: Prims.nat{i < tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.nth (LowParse.BitFields.set_bitfield x lo hi v) i == (match lo <= i && i < hi with | true -> LowParse.BitFields.nth v (i - lo) | _ -> LowParse.BitFields.nth x i))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "Prims.op_LessThan", "Prims._assert", "Prims.eq2", "Prims.bool", "Prims.op_AmpAmp", "LowParse.BitFields.nth", "Prims.unit", "LowParse.BitFields.nth_le_pow2_m", "Prims.op_BarBar", "LowParse.BitFields.nth_shift_left", "FStar.UInt.shift_left", "LowParse.BitFields.nth_not_bitfield_mask", "LowParse.BitFields.not_bitfield_mask", "LowParse.BitFields.nth_logand", "FStar.UInt.logand", "LowParse.BitFields.nth_logor", "LowParse.BitFields.set_bitfield", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) (i: nat{i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) =
let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` (not_bitfield_mask tot lo hi)) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` (not_bitfield_mask tot lo hi)) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else (nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i)); assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_set_bitfield_same_gen
val set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
val set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 373, "start_col": 0, "start_line": 362 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> v: LowParse.BitFields.ubitfield tot (hi - lo) -> lo': Prims.nat -> hi': Prims.nat{lo' <= lo /\ hi <= hi' /\ hi' <= tot} -> v': LowParse.BitFields.ubitfield tot (hi' - lo') -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.set_bitfield (LowParse.BitFields.set_bitfield x lo hi v) lo' hi' v' == LowParse.BitFields.set_bitfield x lo' hi' v')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "LowParse.BitFields.eq_nth", "LowParse.BitFields.set_bitfield", "Prims.op_LessThan", "LowParse.BitFields.nth_set_bitfield", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) (lo': nat) (hi': nat{lo' <= lo /\ hi <= hi' /\ hi' <= tot}) (v': ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) =
eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_full
val get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x)
val get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x)
let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 431, "start_col": 0, "start_line": 424 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield x 0 tot == x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "LowParse.BitFields.nth_get_bitfield", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) =
eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_logxor
val get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
val get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 230, "start_col": 0, "start_line": 222 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> y: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield (FStar.UInt.logxor x y) lo hi == FStar.UInt.logxor (LowParse.BitFields.get_bitfield x lo hi) (LowParse.BitFields.get_bitfield y lo hi))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "FStar.UInt.logxor", "Prims.op_LessThan", "LowParse.BitFields.nth_get_bitfield", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == (get_bitfield x lo hi) `U.logxor` (get_bitfield y lo hi) ) =
eq_nth (get_bitfield (x `U.logxor` y) lo hi) ((get_bitfield x lo hi) `U.logxor` (get_bitfield y lo hi)) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i)
false
LowParse.BitFields.fst
LowParse.BitFields.logor_disjoint
val logor_disjoint (#n: pos) (a b: U.uint_t n) (m: nat{m <= n}) : Lemma (requires (a % pow2 m == 0 /\ b < pow2 m)) (ensures (U.logor #n a b == a + b))
val logor_disjoint (#n: pos) (a b: U.uint_t n) (m: nat{m <= n}) : Lemma (requires (a % pow2 m == 0 /\ b < pow2 m)) (ensures (U.logor #n a b == a + b))
let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 26, "end_line": 254, "start_col": 0, "start_line": 234 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> m: Prims.nat{m <= n} -> FStar.Pervasives.Lemma (requires a % Prims.pow2 m == 0 /\ b < Prims.pow2 m) (ensures FStar.UInt.logor a b == a + b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "FStar.UInt.logor_lemma_1", "Prims.bool", "Prims.l_or", "Prims.op_GreaterThan", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.unit", "FStar.UInt.logor_commutative", "FStar.Math.Lemmas.modulo_lemma", "Prims.pow2", "FStar.UInt.logor_disjoint", "Prims.eq2", "Prims.op_Modulus", "Prims.op_LessThan", "Prims.squash", "FStar.UInt.logor", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let logor_disjoint (#n: pos) (a b: U.uint_t n) (m: nat{m <= n}) : Lemma (requires (a % pow2 m == 0 /\ b < pow2 m)) (ensures (U.logor #n a b == a + b)) =
if m = 0 then U.logor_lemma_1 a else if m = n then (M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b) else U.logor_disjoint a b m
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_set_bitfield_other
val get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
val get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 360, "start_col": 0, "start_line": 346 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> v: LowParse.BitFields.ubitfield tot (hi - lo) -> lo': Prims.nat -> hi': Prims.nat{lo' <= hi' /\ hi' <= tot} -> FStar.Pervasives.Lemma (requires hi' <= lo \/ hi <= lo') (ensures LowParse.BitFields.get_bitfield (LowParse.BitFields.set_bitfield x lo hi v) lo' hi' == LowParse.BitFields.get_bitfield x lo' hi')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "LowParse.BitFields.set_bitfield", "Prims.op_LessThan", "LowParse.BitFields.nth_set_bitfield", "Prims.op_Addition", "Prims.bool", "Prims.unit", "LowParse.BitFields.nth_get_bitfield", "Prims.l_or", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) (lo': nat) (hi': nat{lo' <= hi' /\ hi' <= tot}) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) =
eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then nth_set_bitfield x lo hi v (i + lo'))
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_empty
val set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x)
val set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x)
let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 403, "start_col": 0, "start_line": 397 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> i: Prims.nat{i <= tot} -> y: LowParse.BitFields.ubitfield tot 0 -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.set_bitfield x i i y == x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.ubitfield", "LowParse.BitFields.eq_nth", "LowParse.BitFields.set_bitfield", "Prims.op_LessThan", "LowParse.BitFields.nth_set_bitfield", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat{i <= tot}) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) =
eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j)
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_set_bitfield_other
val set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
val set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 387, "start_col": 0, "start_line": 375 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> v: LowParse.BitFields.ubitfield tot (hi - lo) -> lo': Prims.nat -> hi': Prims.nat{lo' <= hi' /\ hi' <= tot} -> v': LowParse.BitFields.ubitfield tot (hi' - lo') -> FStar.Pervasives.Lemma (requires hi' <= lo \/ hi <= lo') (ensures LowParse.BitFields.set_bitfield (LowParse.BitFields.set_bitfield x lo hi v) lo' hi' v' == LowParse.BitFields.set_bitfield (LowParse.BitFields.set_bitfield x lo' hi' v') lo hi v)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "LowParse.BitFields.eq_nth", "LowParse.BitFields.set_bitfield", "Prims.op_LessThan", "LowParse.BitFields.nth_set_bitfield", "Prims.unit", "Prims.l_or", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) (lo': nat) (hi': nat{lo' <= hi' /\ hi' <= tot}) (v': ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) =
eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i)
false
LowParse.BitFields.fst
LowParse.BitFields.logand_mask
val logand_mask (#n: pos) (a: U.uint_t n) (m: nat{m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m)
val logand_mask (#n: pos) (a: U.uint_t n) (m: nat{m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m)
let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 177, "start_col": 0, "start_line": 160 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> m: Prims.nat{m <= n} -> FStar.Pervasives.Lemma (ensures Prims.pow2 m <= Prims.pow2 n /\ FStar.UInt.logand a (Prims.pow2 m - 1) == a % Prims.pow2 m)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "FStar.UInt.logand_lemma_1", "Prims.bool", "Prims.l_or", "Prims.op_GreaterThan", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "FStar.Math.Lemmas.modulo_lemma", "Prims.pow2", "Prims.unit", "FStar.UInt.logand_lemma_2", "FStar.UInt.logand_mask", "FStar.Math.Lemmas.pow2_le_compat", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.UInt.logand", "Prims.op_Subtraction", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let logand_mask (#n: pos) (a: U.uint_t n) (m: nat{m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) =
M.pow2_le_compat n m; if m = 0 then U.logand_lemma_1 a else if m = n then (U.logand_lemma_2 a; M.modulo_lemma a (pow2 m)) else U.logand_mask a m
false
LowParse.BitFields.fst
LowParse.BitFields.nth_zero
val nth_zero (tot: pos) (i: nat{i < tot}) : Lemma (nth #tot 0 i == false)
val nth_zero (tot: pos) (i: nat{i < tot}) : Lemma (nth #tot 0 i == false)
let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 25, "end_line": 410, "start_col": 0, "start_line": 405 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot: Prims.pos -> i: Prims.nat{i < tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.nth 0 i == false)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt.zero_nth_lemma", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.bool", "LowParse.BitFields.nth", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let nth_zero (tot: pos) (i: nat{i < tot}) : Lemma (nth #tot 0 i == false) =
U.zero_nth_lemma #tot i
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_full
val set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y)
val set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y)
let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 395, "start_col": 0, "start_line": 389 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> y: LowParse.BitFields.ubitfield tot tot -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.set_bitfield x 0 tot y == y)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "LowParse.BitFields.ubitfield", "LowParse.BitFields.eq_nth", "LowParse.BitFields.set_bitfield", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "LowParse.BitFields.nth_set_bitfield", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) =
eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_empty
val get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0)
val get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0)
let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 442, "start_col": 0, "start_line": 433 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> i: Prims.nat{i <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield x i i == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "Prims.op_LessThan", "LowParse.BitFields.nth_zero", "Prims.unit", "LowParse.BitFields.nth_get_bitfield", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat{i <= tot}) : Lemma (get_bitfield x i i == 0) =
eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_partition
val get_bitfield_partition (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi))
val get_bitfield_partition (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi))
let get_bitfield_partition = get_bitfield_partition'
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 52, "end_line": 696, "start_col": 0, "start_line": 696 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> y: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat -> FStar.Pervasives.Lemma (requires LowParse.BitFields.get_bitfield_partition_prop x y lo hi l) (ensures LowParse.BitFields.get_bitfield x lo hi == LowParse.BitFields.get_bitfield y lo hi)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.BitFields.get_bitfield_partition'" ]
[]
true
false
true
false
false
let get_bitfield_partition =
get_bitfield_partition'
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_partition_2
val get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y ))
val get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y ))
let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 21, "end_line": 678, "start_col": 0, "start_line": 664 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mid: Prims.nat{mid <= tot} -> x: FStar.UInt.uint_t tot -> y: FStar.UInt.uint_t tot -> FStar.Pervasives.Lemma (requires LowParse.BitFields.get_bitfield x 0 mid == LowParse.BitFields.get_bitfield y 0 mid /\ LowParse.BitFields.get_bitfield x mid tot == LowParse.BitFields.get_bitfield y mid tot) (ensures x == y)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt.uint_t", "LowParse.BitFields.get_bitfield_full", "Prims.unit", "LowParse.BitFields.get_bitfield_partition_2_gen", "Prims.l_and", "Prims.eq2", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "LowParse.BitFields.get_bitfield", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let get_bitfield_partition_2 (#tot: pos) (mid: nat{mid <= tot}) (x y: U.uint_t tot) : Lemma (requires (get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot)) (ensures (x == y)) =
get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_partition'
val get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l)
val get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l)
let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 45, "end_line": 694, "start_col": 0, "start_line": 680 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> y: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat -> FStar.Pervasives.Lemma (requires LowParse.BitFields.get_bitfield_partition_prop x y lo hi l) (ensures LowParse.BitFields.get_bitfield x lo hi == LowParse.BitFields.get_bitfield y lo hi) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.BitFields.get_bitfield_partition_2_gen", "Prims.unit", "LowParse.BitFields.get_bitfield_partition'", "LowParse.BitFields.get_bitfield_partition_prop", "Prims.squash", "Prims.eq2", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "LowParse.BitFields.get_bitfield", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) =
match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y
false
LowParse.BitFields.fst
LowParse.BitFields.pow2_m_minus_one_eq
val pow2_m_minus_one_eq (n m: nat) : Lemma (requires (m <= n)) (ensures ((pow2 n - 1) / pow2 m == pow2 (n - m) - 1))
val pow2_m_minus_one_eq (n m: nat) : Lemma (requires (m <= n)) (ensures ((pow2 n - 1) / pow2 m == pow2 (n - m) - 1))
let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 64, "end_line": 844, "start_col": 0, "start_line": 834 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> m: Prims.nat -> FStar.Pervasives.Lemma (requires m <= n) (ensures (Prims.pow2 n - 1) / Prims.pow2 m == Prims.pow2 (n - m) - 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Math.Lemmas.division_definition", "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.pow2_le_compat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.squash", "Prims.eq2", "Prims.int", "Prims.op_Division", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let pow2_m_minus_one_eq (n m: nat) : Lemma (requires (m <= n)) (ensures ((pow2 n - 1) / pow2 m == pow2 (n - m) - 1)) =
M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_eq64_lhs
val bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot U64.t
val bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot U64.t
let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 927, "start_col": 0, "start_line": 924 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 64} -> FStar.UInt64.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt64.logand", "LowParse.BitFields.bitfield_mask64" ]
[]
false
false
false
false
false
let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot U64.t =
x `U64.logand` (bitfield_mask64 lo hi)
false
LowParse.BitFields.fst
LowParse.BitFields.nth_size
val nth_size (n1: nat) (n2: nat{n1 <= n2}) (x: U.uint_t n1) (i: nat{i < n2}) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
val nth_size (n1: nat) (n2: nat{n1 <= n2}) (x: U.uint_t n1) (i: nat{i < n2}) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 35, "end_line": 706, "start_col": 0, "start_line": 698 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n1: Prims.nat -> n2: Prims.nat{n1 <= n2} -> x: FStar.UInt.uint_t n1 -> i: Prims.nat{i < n2} -> FStar.Pervasives.Lemma (ensures x < Prims.pow2 n2 /\ LowParse.BitFields.nth x i == (i < n1 && LowParse.BitFields.nth x i))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt.uint_t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.bool", "LowParse.BitFields.nth_size", "Prims.op_Subtraction", "Prims.op_Division", "Prims.unit", "LowParse.BitFields.nth_le_pow2_m", "FStar.Math.Lemmas.pow2_le_compat", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.pow2", "Prims.eq2", "LowParse.BitFields.nth", "Prims.op_AmpAmp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec nth_size (n1: nat) (n2: nat{n1 <= n2}) (x: U.uint_t n1) (i: nat{i < n2}) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) =
M.pow2_le_compat n2 n1; if i < n1 then if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) else nth_le_pow2_m #n2 x n1 i
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_size
val get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
val get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 730, "start_col": 0, "start_line": 708 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot1: Prims.pos -> tot2: Prims.pos -> x: Prims.nat{x < Prims.pow2 tot1 /\ tot1 <= tot2} -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot1} -> FStar.Pervasives.Lemma (ensures x < Prims.pow2 tot2 /\ LowParse.BitFields.get_bitfield x lo hi == LowParse.BitFields.get_bitfield x lo hi)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_LessThanOrEqual", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "Prims.op_Subtraction", "LowParse.BitFields.nth_size", "Prims.op_Addition", "Prims.bool", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.op_AmpAmp", "LowParse.BitFields.nth", "LowParse.BitFields.nth_get_bitfield", "FStar.Math.Lemmas.pow2_le_compat", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_size (tot1 tot2: pos) (x: nat{x < pow2 tot1 /\ tot1 <= tot2}) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot1}) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) =
M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then (nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo)))
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_eq32_lhs
val bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot U32.t
val bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot U32.t
let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 1004, "start_col": 0, "start_line": 1001 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 32} -> FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.logand", "LowParse.BitFields.bitfield_mask32" ]
[]
false
false
false
false
false
let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot U32.t =
x `U32.logand` (bitfield_mask32 lo hi)
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_size
val set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
val set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 753, "start_col": 0, "start_line": 732 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot1: Prims.pos -> tot2: Prims.pos -> x: Prims.nat{x < Prims.pow2 tot1 /\ tot1 <= tot2} -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot1} -> v: LowParse.BitFields.ubitfield tot1 (hi - lo) -> FStar.Pervasives.Lemma (ensures x < Prims.pow2 tot2 /\ v < Prims.pow2 tot2 /\ LowParse.BitFields.set_bitfield x lo hi v == LowParse.BitFields.set_bitfield x lo hi v)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_LessThanOrEqual", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "LowParse.BitFields.eq_nth", "LowParse.BitFields.set_bitfield", "Prims.op_AmpAmp", "LowParse.BitFields.nth_size", "Prims.bool", "Prims.unit", "LowParse.BitFields.nth_set_bitfield", "LowParse.BitFields.nth", "FStar.Math.Lemmas.pow2_le_compat", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let set_bitfield_size (tot1 tot2: pos) (x: nat{x < pow2 tot1 /\ tot1 <= tot2}) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot1}) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) =
M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then (nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo)))
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_eq
val get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
val get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 832, "start_col": 0, "start_line": 809 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield x lo hi == x / Prims.pow2 lo % Prims.pow2 (hi - lo))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "LowParse.BitFields.get_bitfield_empty", "Prims.unit", "LowParse.BitFields.mod_1", "Prims.op_Division", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims._assert", "Prims.bool", "LowParse.BitFields.get_bitfield_full", "FStar.Math.Lemmas.small_mod", "LowParse.BitFields.div_1", "Prims.l_or", "Prims.op_GreaterThan", "Prims.op_GreaterThanOrEqual", "FStar.UInt.shift_right_value_lemma", "FStar.UInt.logand_mask", "FStar.UInt.shift_right", "FStar.Math.Lemmas.multiple_division_lemma", "LowParse.BitFields.bitfield_mask", "FStar.UInt.shift_right_logand_lemma", "Prims.op_LessThan", "Prims.l_True", "Prims.squash", "LowParse.BitFields.get_bitfield", "Prims.op_Modulus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) =
if hi - lo = 0 then (assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo) else if hi - lo = tot then (assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x) else (assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo)
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_eq
val set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
val set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 30, "end_line": 872, "start_col": 0, "start_line": 868 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> v: LowParse.BitFields.ubitfield tot (hi - lo) -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.set_bitfield x lo hi v == FStar.UInt.logor (FStar.UInt.logand x (FStar.UInt.lognot (FStar.UInt.shift_left (FStar.UInt.shift_right (FStar.UInt.lognot 0) (tot - (hi - lo))) lo))) (FStar.UInt.shift_left v lo))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "LowParse.BitFields.bitfield_mask_eq_2", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.BitFields.set_bitfield", "FStar.UInt.logor", "FStar.UInt.logand", "FStar.UInt.lognot", "FStar.UInt.shift_left", "FStar.UInt.shift_right", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` (U.lognot (((U.lognot 0) `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo))) `U.logor` (v `U.shift_left` lo)) =
bitfield_mask_eq_2 tot lo hi
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_bound
val set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound)
val set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound)
let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 770, "start_col": 0, "start_line": 755 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> bound: Prims.nat{bound <= tot /\ x < Prims.pow2 bound} -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= bound} -> v: LowParse.BitFields.ubitfield tot (hi - lo) -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.set_bitfield x lo hi v < Prims.pow2 bound)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.pow2", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "Prims.op_Equality", "Prims.int", "LowParse.BitFields.set_bitfield_empty", "Prims.bool", "LowParse.BitFields.set_bitfield_size", "Prims.unit", "FStar.Math.Lemmas.pow2_le_compat", "Prims.l_True", "Prims.squash", "LowParse.BitFields.set_bitfield", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat{bound <= tot /\ x < pow2 bound}) (lo: nat) (hi: nat{lo <= hi /\ hi <= bound}) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) =
if bound = 0 then set_bitfield_empty x lo v else (M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v)
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_get_bitfield
val set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x)
val set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x)
let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 625, "start_col": 0, "start_line": 615 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.set_bitfield x lo hi (LowParse.BitFields.get_bitfield x lo hi) == x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.eq_nth", "LowParse.BitFields.set_bitfield", "LowParse.BitFields.get_bitfield", "Prims.op_LessThan", "Prims.op_AmpAmp", "LowParse.BitFields.nth_get_bitfield", "Prims.op_Subtraction", "Prims.bool", "Prims.unit", "LowParse.BitFields.nth_set_bitfield", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) =
eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo))
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_eq_2
val get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
val get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 856, "start_col": 0, "start_line": 846 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield x lo hi == FStar.UInt.shift_right (FStar.UInt.shift_left x (tot - hi)) (tot - hi + lo))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "FStar.UInt.shift_right", "FStar.UInt.shift_left", "Prims.op_Subtraction", "Prims.op_Addition", "Prims.op_LessThan", "LowParse.BitFields.nth_shift_left", "Prims.bool", "Prims.unit", "Prims.int", "LowParse.BitFields.nth_shift_right", "LowParse.BitFields.nth_get_bitfield", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) =
eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j)
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_is_zero
val bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` (bitfield_mask tot lo hi) == 0)
val bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` (bitfield_mask tot lo hi) == 0)
let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g ()
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 30, "end_line": 565, "start_col": 0, "start_line": 529 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield x lo hi == 0 <==> FStar.UInt.logand x (LowParse.BitFields.bitfield_mask tot lo hi) == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Classical.move_requires", "Prims.unit", "Prims.eq2", "Prims.int", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "LowParse.BitFields.eq_nth", "Prims.op_LessThan", "Prims.op_AmpAmp", "LowParse.BitFields.nth_zero", "Prims.op_Subtraction", "LowParse.BitFields.nth_get_bitfield", "Prims.bool", "LowParse.BitFields.nth_bitfield_mask", "LowParse.BitFields.nth_logand", "LowParse.BitFields.bitfield_mask", "Prims.op_Addition", "LowParse.BitFields.ubitfield", "LowParse.BitFields.get_bitfield", "FStar.UInt.logand", "Prims.l_True", "Prims.l_iff" ]
[]
false
false
true
false
false
let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` (bitfield_mask tot lo hi) == 0) =
let y = x `U.logand` (bitfield_mask tot lo hi) in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo)) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then (nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo))) in Classical.move_requires f (); Classical.move_requires g ()
false
LowParse.BitFields.fst
LowParse.BitFields.lt_pow2_get_bitfield_hi
val lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0))
val lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0))
let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 463, "start_col": 0, "start_line": 444 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> mi: Prims.nat{mi <= tot} -> FStar.Pervasives.Lemma (requires x < Prims.pow2 mi) (ensures LowParse.BitFields.get_bitfield x mi tot == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "LowParse.BitFields.get_bitfield_zero", "Prims.bool", "Prims.op_LessThan", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "LowParse.BitFields.nth_pow2_minus_one", "Prims.unit", "LowParse.BitFields.nth_get_bitfield", "FStar.UInt.logand", "Prims.op_Subtraction", "Prims.pow2", "LowParse.BitFields.nth_zero", "FStar.UInt.logand_mask", "FStar.Math.Lemmas.modulo_lemma", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat{mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) =
if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then (M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i))
false
LowParse.BitFields.fst
LowParse.BitFields.u64_shift_right
val u64_shift_right (x: U64.t) (amount: U32.t{U32.v amount <= 64}) : Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_right` (U32.v amount)})
val u64_shift_right (x: U64.t) (amount: U32.t{U32.v amount <= 64}) : Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_right` (U32.v amount)})
let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 59, "end_line": 897, "start_col": 0, "start_line": 893 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 64} -> y: FStar.UInt64.t {FStar.UInt64.v y == FStar.UInt.shift_right (FStar.UInt64.v x) (FStar.UInt32.v amount)}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "FStar.UInt64.__uint_to_t", "Prims.bool", "FStar.UInt64.shift_right", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt64.n", "FStar.UInt64.v", "FStar.UInt.shift_right" ]
[]
false
false
false
false
false
let u64_shift_right (x: U64.t) (amount: U32.t{U32.v amount <= 64}) : Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_right` (U32.v amount)}) =
if amount = 64ul then 0uL else x `U64.shift_right` amount
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_zero_inner
val get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
val get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f ()
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 30, "end_line": 525, "start_col": 0, "start_line": 504 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> lo': Prims.nat{lo <= lo'} -> hi': Prims.nat{lo' <= hi' /\ hi' <= hi} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield x lo hi == 0 ==> LowParse.BitFields.get_bitfield x lo' hi' == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Classical.move_requires", "Prims.unit", "Prims.eq2", "Prims.int", "LowParse.BitFields.get_bitfield", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "LowParse.BitFields.eq_nth", "Prims.op_LessThan", "Prims.op_Subtraction", "LowParse.BitFields.nth_zero", "Prims.op_Addition", "LowParse.BitFields.nth_get_bitfield", "Prims.bool", "Prims.l_True", "Prims.l_imp" ]
[]
false
false
true
false
false
let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (lo': nat{lo <= lo'}) (hi': nat{lo' <= hi' /\ hi' <= hi}) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) =
let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then (nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo))) in Classical.move_requires f ()
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_hi_lt_pow2
val get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi))
val get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi))
let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 487, "start_col": 0, "start_line": 465 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> mi: Prims.nat{mi <= tot} -> FStar.Pervasives.Lemma (requires LowParse.BitFields.get_bitfield x mi tot == 0) (ensures x < Prims.pow2 mi)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "LowParse.BitFields.get_bitfield_full", "Prims.bool", "Prims.op_LessThan", "FStar.Math.Lemmas.lemma_mod_lt", "Prims.pow2", "Prims.unit", "FStar.UInt.logand_mask", "LowParse.BitFields.eq_nth", "FStar.UInt.logand", "Prims.op_Subtraction", "LowParse.BitFields.nth_zero", "LowParse.BitFields.nth_get_bitfield", "LowParse.BitFields.nth_pow2_minus_one", "FStar.Math.Lemmas.pow2_le_compat", "Prims.eq2", "LowParse.BitFields.get_bitfield", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat{mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) =
if mi = 0 then get_bitfield_full x else if mi < tot then (M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then (nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi))); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi))
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_set_bitfield_get_bitfield
val set_bitfield_set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= hi - lo }) (v' : ubitfield tot (hi' - lo')) : Lemma ( let v = set_bitfield (get_bitfield x lo hi) lo' hi' v' in v < pow2 (hi - lo) /\ set_bitfield x lo hi v == set_bitfield x (lo + lo') (lo + hi') v' )
val set_bitfield_set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= hi - lo }) (v' : ubitfield tot (hi' - lo')) : Lemma ( let v = set_bitfield (get_bitfield x lo hi) lo' hi' v' in v < pow2 (hi - lo) /\ set_bitfield x lo hi v == set_bitfield x (lo + lo') (lo + hi') v' )
let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 797, "start_col": 0, "start_line": 774 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.arith.nl=false" ], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> lo': Prims.nat -> hi': Prims.nat{lo' <= hi' /\ hi' <= hi - lo} -> v': LowParse.BitFields.ubitfield tot (hi' - lo') -> FStar.Pervasives.Lemma (ensures (let v = LowParse.BitFields.set_bitfield (LowParse.BitFields.get_bitfield x lo hi) lo' hi' v' in v < Prims.pow2 (hi - lo) /\ LowParse.BitFields.set_bitfield x lo hi v == LowParse.BitFields.set_bitfield x (lo + lo') (lo + hi') v'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "LowParse.BitFields.ubitfield", "LowParse.BitFields.eq_nth", "Prims.op_LessThan", "Prims.op_AmpAmp", "Prims.bool", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.unit", "LowParse.BitFields.nth_get_bitfield", "LowParse.BitFields.nth", "LowParse.BitFields.get_bitfield", "LowParse.BitFields.nth_set_bitfield", "LowParse.BitFields.set_bitfield", "LowParse.BitFields.set_bitfield_bound" ]
[]
false
false
true
false
false
let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' =
set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v'; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i; if lo <= i && i < hi then (assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then () else (assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i))))
false
LowParse.BitFields.fst
LowParse.BitFields.not_bitfield_mask64
val not_bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot (x: U64.t{U64.v x == not_bitfield_mask 64 lo hi})
val not_bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot (x: U64.t{U64.v x == not_bitfield_mask 64 lo hi})
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 36, "end_line": 907, "start_col": 0, "start_line": 906 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 64} -> x: FStar.UInt64.t{FStar.UInt64.v x == LowParse.BitFields.not_bitfield_mask 64 lo hi}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt64.lognot", "LowParse.BitFields.bitfield_mask64", "FStar.UInt64.t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt64.v", "LowParse.BitFields.not_bitfield_mask" ]
[]
false
false
false
false
false
let not_bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot (x: U64.t{U64.v x == not_bitfield_mask 64 lo hi}) =
U64.lognot (bitfield_mask64 lo hi)
false
LowParse.BitFields.fst
LowParse.BitFields.not_bitfield_mask32
val not_bitfield_mask32 (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot (x: U32.t{U32.v x == not_bitfield_mask 32 lo hi})
val not_bitfield_mask32 (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot (x: U32.t{U32.v x == not_bitfield_mask 32 lo hi})
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 36, "end_line": 984, "start_col": 0, "start_line": 983 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 32} -> x: FStar.UInt32.t{FStar.UInt32.v x == LowParse.BitFields.not_bitfield_mask 32 lo hi}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.lognot", "LowParse.BitFields.bitfield_mask32", "FStar.UInt32.t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt32.v", "LowParse.BitFields.not_bitfield_mask" ]
[]
false
false
false
false
false
let not_bitfield_mask32 (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot (x: U32.t{U32.v x == not_bitfield_mask 32 lo hi}) =
U32.lognot (bitfield_mask32 lo hi)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield64
val get_bitfield64 (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot (y: U64.t{U64.v y == get_bitfield (U64.v x) lo hi})
val get_bitfield64 (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot (y: U64.t{U64.v y == get_bitfield (U64.v x) lo hi})
let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 77, "end_line": 903, "start_col": 0, "start_line": 900 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 64} -> y: FStar.UInt64.t{FStar.UInt64.v y == LowParse.BitFields.get_bitfield (FStar.UInt64.v x) lo hi}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.u64_shift_right", "FStar.UInt64.logand", "LowParse.BitFields.bitfield_mask64", "FStar.UInt32.uint_to_t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt64.n", "FStar.UInt64.v", "LowParse.BitFields.get_bitfield" ]
[]
false
false
false
false
false
let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot (y: U64.t{U64.v y == get_bitfield (U64.v x) lo hi}) =
(x `U64.logand` (bitfield_mask64 lo hi)) `u64_shift_right` (U32.uint_to_t lo)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_get_bitfield
val get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
val get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 501, "start_col": 0, "start_line": 489 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> lo': Prims.nat -> hi': Prims.nat{lo' <= hi' /\ hi' <= hi - lo} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield (LowParse.BitFields.get_bitfield x lo hi) lo' hi' == LowParse.BitFields.get_bitfield x (lo + lo') (lo + hi'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "Prims.op_Addition", "Prims.op_LessThan", "LowParse.BitFields.nth_get_bitfield", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.l_or", "Prims.pow2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (lo': nat) (hi': nat{lo' <= hi' /\ hi' <= hi - lo}) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) =
eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo'))
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_mask64
val bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot (x: U64.t{U64.v x == bitfield_mask 64 lo hi})
val bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot (x: U64.t{U64.v x == bitfield_mask 64 lo hi})
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 890, "start_col": 0, "start_line": 884 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 64} -> x: FStar.UInt64.t{FStar.UInt64.v x == LowParse.BitFields.bitfield_mask 64 lo hi}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "FStar.UInt64.__uint_to_t", "Prims.bool", "FStar.UInt64.shift_left", "FStar.UInt64.shift_right", "FStar.UInt64.lognot", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "FStar.UInt32.uint_to_t", "Prims.op_Subtraction", "Prims.unit", "LowParse.BitFields.bitfield_mask_eq_2", "FStar.UInt64.t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt64.n", "FStar.UInt64.v", "LowParse.BitFields.bitfield_mask" ]
[]
false
false
false
false
false
let bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) : Tot (x: U64.t{U64.v x == bitfield_mask 64 lo hi}) =
if lo = hi then 0uL else (bitfield_mask_eq_2 64 lo hi; ((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` (U32.uint_to_t lo))
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_eq16_lhs
val bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot U16.t
val bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot U16.t
let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 1081, "start_col": 0, "start_line": 1078 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 16} -> FStar.UInt16.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt16.logand", "LowParse.BitFields.bitfield_mask16" ]
[]
false
false
false
false
false
let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot U16.t =
x `U16.logand` (bitfield_mask16 lo hi)
false
LowParse.BitFields.fst
LowParse.BitFields.u64_shift_left
val u64_shift_left (x: U64.t) (amount: U32.t{U32.v amount <= 64}) : Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_left` (U32.v amount)})
val u64_shift_left (x: U64.t) (amount: U32.t{U32.v amount <= 64}) : Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_left` (U32.v amount)})
let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 58, "end_line": 914, "start_col": 0, "start_line": 910 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 64} -> y: FStar.UInt64.t {FStar.UInt64.v y == FStar.UInt.shift_left (FStar.UInt64.v x) (FStar.UInt32.v amount)}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "FStar.UInt64.__uint_to_t", "Prims.bool", "FStar.UInt64.shift_left", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt64.n", "FStar.UInt64.v", "FStar.UInt.shift_left" ]
[]
false
false
false
false
false
let u64_shift_left (x: U64.t) (amount: U32.t{U32.v amount <= 64}) : Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_left` (U32.v amount)}) =
if amount = 64ul then 0uL else x `U64.shift_left` amount
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield32
val get_bitfield32 (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) lo hi})
val get_bitfield32 (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) lo hi})
let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 77, "end_line": 980, "start_col": 0, "start_line": 977 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 32} -> y: FStar.UInt32.t{FStar.UInt32.v y == LowParse.BitFields.get_bitfield (FStar.UInt32.v x) lo hi}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.u32_shift_right", "FStar.UInt32.logand", "LowParse.BitFields.bitfield_mask32", "FStar.UInt32.uint_to_t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt32.n", "FStar.UInt32.v", "LowParse.BitFields.get_bitfield" ]
[]
false
false
false
false
false
let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) lo hi}) =
(x `U32.logand` (bitfield_mask32 lo hi)) `u32_shift_right` (U32.uint_to_t lo)
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield64
val set_bitfield64 (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) (v: U64.t{U64.v v < pow2 (hi - lo)}) : Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) lo hi (U64.v v)})
val set_bitfield64 (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) (v: U64.t{U64.v v < pow2 (hi - lo)}) : Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) lo hi (U64.v v)})
let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 94, "end_line": 921, "start_col": 0, "start_line": 917 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 64} -> v: FStar.UInt64.t{FStar.UInt64.v v < Prims.pow2 (hi - lo)} -> y: FStar.UInt64.t { FStar.UInt64.v y == LowParse.BitFields.set_bitfield (FStar.UInt64.v x) lo hi (FStar.UInt64.v v) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.UInt64.v", "Prims.pow2", "Prims.op_Subtraction", "FStar.UInt64.logor", "FStar.UInt64.logand", "LowParse.BitFields.not_bitfield_mask64", "LowParse.BitFields.u64_shift_left", "FStar.UInt32.uint_to_t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt64.n", "LowParse.BitFields.set_bitfield" ]
[]
false
false
false
false
false
let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) (v: U64.t{U64.v v < pow2 (hi - lo)}) : Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) lo hi (U64.v v)}) =
(x `U64.logand` (not_bitfield_mask64 lo hi)) `U64.logor` (v `u64_shift_left` (U32.uint_to_t lo))
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_mask32
val bitfield_mask32 (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot (x: U32.t{U32.v x == bitfield_mask 32 lo hi})
val bitfield_mask32 (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot (x: U32.t{U32.v x == bitfield_mask 32 lo hi})
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 967, "start_col": 0, "start_line": 961 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 32} -> x: FStar.UInt32.t{FStar.UInt32.v x == LowParse.BitFields.bitfield_mask 32 lo hi}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "Prims.bool", "FStar.UInt32.shift_left", "FStar.UInt32.shift_right", "FStar.UInt32.lognot", "FStar.UInt32.sub", "FStar.UInt32.uint_to_t", "Prims.op_Subtraction", "Prims.unit", "LowParse.BitFields.bitfield_mask_eq_2", "FStar.UInt32.t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt32.n", "FStar.UInt32.v", "LowParse.BitFields.bitfield_mask" ]
[]
false
false
false
false
false
let bitfield_mask32 (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) : Tot (x: U32.t{U32.v x == bitfield_mask 32 lo hi}) =
if lo = hi then 0ul else (bitfield_mask_eq_2 32 lo hi; ((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` (U32.uint_to_t lo))
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_mask_eq_2
val bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (bitfield_mask tot lo hi == U.shift_left #tot ((U.lognot 0) `U.shift_right` (tot - (hi - lo))) lo)
val bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (bitfield_mask tot lo hi == U.shift_left #tot ((U.lognot 0) `U.shift_right` (tot - (hi - lo))) lo)
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 65, "end_line": 866, "start_col": 0, "start_line": 859 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tot: Prims.pos -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.bitfield_mask tot lo hi == FStar.UInt.shift_left (FStar.UInt.shift_right (FStar.UInt.lognot 0) (tot - (hi - lo))) lo)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt.shift_right_value_lemma", "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "FStar.UInt.lemma_lognot_value_mod", "LowParse.BitFields.pow2_m_minus_one_eq", "LowParse.BitFields.bitfield_mask_eq", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.UInt.uint_t", "LowParse.BitFields.bitfield_mask", "FStar.UInt.shift_left", "FStar.UInt.shift_right", "FStar.UInt.lognot", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) : Lemma (bitfield_mask tot lo hi == U.shift_left #tot ((U.lognot 0) `U.shift_right` (tot - (hi - lo))) lo) =
bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
false
LowParse.BitFields.fst
LowParse.BitFields.u32_shift_right
val u32_shift_right (x: U32.t) (amount: U32.t{U32.v amount <= 32}) : Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_right` (U32.v amount)})
val u32_shift_right (x: U32.t) (amount: U32.t{U32.v amount <= 32}) : Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_right` (U32.v amount)})
let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 59, "end_line": 974, "start_col": 0, "start_line": 970 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 32} -> y: FStar.UInt32.t {FStar.UInt32.v y == FStar.UInt.shift_right (FStar.UInt32.v x) (FStar.UInt32.v amount)}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "Prims.bool", "FStar.UInt32.shift_right", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt32.n", "FStar.UInt.shift_right" ]
[]
false
false
false
false
false
let u32_shift_right (x: U32.t) (amount: U32.t{U32.v amount <= 32}) : Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_right` (U32.v amount)}) =
if amount = 32ul then 0ul else x `U32.shift_right` amount
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_mask16
val bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot (x: U16.t{U16.v x == bitfield_mask 16 lo hi})
val bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot (x: U16.t{U16.v x == bitfield_mask 16 lo hi})
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 1044, "start_col": 0, "start_line": 1038 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 16} -> x: FStar.UInt16.t{FStar.UInt16.v x == LowParse.BitFields.bitfield_mask 16 lo hi}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "FStar.UInt16.__uint_to_t", "Prims.bool", "FStar.UInt16.shift_left", "FStar.UInt16.shift_right", "FStar.UInt16.lognot", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "FStar.UInt32.uint_to_t", "Prims.op_Subtraction", "Prims.unit", "LowParse.BitFields.bitfield_mask_eq_2", "FStar.UInt16.t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt16.n", "FStar.UInt16.v", "LowParse.BitFields.bitfield_mask" ]
[]
false
false
false
false
false
let bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot (x: U16.t{U16.v x == bitfield_mask 16 lo hi}) =
if lo = hi then 0us else (bitfield_mask_eq_2 16 lo hi; ((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` (U32.uint_to_t lo))
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_gen64
val get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t{U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi)})
val get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t{U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi)})
let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 95, "end_line": 948, "start_col": 0, "start_line": 944 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> lo: FStar.UInt32.t -> hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 64} -> y: FStar.UInt64.t { FStar.UInt64.v y == LowParse.BitFields.get_bitfield (FStar.UInt64.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "FStar.UInt64.shift_right", "FStar.UInt64.shift_left", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "FStar.UInt32.add", "Prims.unit", "LowParse.BitFields.get_bitfield_eq_2", "FStar.UInt64.v", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt64.n", "LowParse.BitFields.get_bitfield" ]
[]
false
false
false
false
false
let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t{U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi)}) =
get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield32
val set_bitfield32 (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) (v: U32.t{U32.v v < pow2 (hi - lo)}) : Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) lo hi (U32.v v)})
val set_bitfield32 (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) (v: U32.t{U32.v v < pow2 (hi - lo)}) : Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) lo hi (U32.v v)})
let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 94, "end_line": 998, "start_col": 0, "start_line": 994 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 32} -> v: FStar.UInt32.t{FStar.UInt32.v v < Prims.pow2 (hi - lo)} -> y: FStar.UInt32.t { FStar.UInt32.v y == LowParse.BitFields.set_bitfield (FStar.UInt32.v x) lo hi (FStar.UInt32.v v) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.pow2", "Prims.op_Subtraction", "FStar.UInt32.logor", "FStar.UInt32.logand", "LowParse.BitFields.not_bitfield_mask32", "LowParse.BitFields.u32_shift_left", "FStar.UInt32.uint_to_t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt32.n", "LowParse.BitFields.set_bitfield" ]
[]
false
false
false
false
false
let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) (v: U32.t{U32.v v < pow2 (hi - lo)}) : Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) lo hi (U32.v v)}) =
(x `U32.logand` (not_bitfield_mask32 lo hi)) `U32.logor` (v `u32_shift_left` (U32.uint_to_t lo))
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_eq8_lhs
val bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot U8.t
val bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot U8.t
let bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot U8.t = x `U8.logand` bitfield_mask8 lo hi
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 36, "end_line": 1190, "start_col": 0, "start_line": 1187 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2 // inline_for_extraction // no, same let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6 inline_for_extraction let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi }) = if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) inline_for_extraction let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) = U8.lognot (bitfield_mask8 lo hi) inline_for_extraction let u8_shift_left (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_left` amount in y inline_for_extraction let set_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) }) = if lo = hi then begin set_bitfield_empty #8 (U8.v x) lo (U8.v v); x end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 8} -> FStar.UInt8.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt8.logand", "LowParse.BitFields.bitfield_mask8" ]
[]
false
false
false
false
false
let bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot U8.t =
x `U8.logand` (bitfield_mask8 lo hi)
false
LowParse.BitFields.fst
LowParse.BitFields.u16_shift_right
val u16_shift_right (x: U16.t) (amount: U32.t{U32.v amount <= 16}) : Tot (y: U16.t{U16.v y == (U16.v x) `U.shift_right` (U32.v amount)})
val u16_shift_right (x: U16.t) (amount: U32.t{U32.v amount <= 16}) : Tot (y: U16.t{U16.v y == (U16.v x) `U.shift_right` (U32.v amount)})
let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 59, "end_line": 1051, "start_col": 0, "start_line": 1047 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 16} -> y: FStar.UInt16.t {FStar.UInt16.v y == FStar.UInt.shift_right (FStar.UInt16.v x) (FStar.UInt32.v amount)}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "FStar.UInt16.__uint_to_t", "Prims.bool", "FStar.UInt16.shift_right", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt16.n", "FStar.UInt16.v", "FStar.UInt.shift_right" ]
[]
false
false
false
false
false
let u16_shift_right (x: U16.t) (amount: U32.t{U32.v amount <= 16}) : Tot (y: U16.t{U16.v y == (U16.v x) `U.shift_right` (U32.v amount)}) =
if amount = 16ul then 0us else x `U16.shift_right` amount
false
LowParse.BitFields.fst
LowParse.BitFields.not_bitfield_mask16
val not_bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot (x: U16.t{U16.v x == not_bitfield_mask 16 lo hi})
val not_bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot (x: U16.t{U16.v x == not_bitfield_mask 16 lo hi})
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 36, "end_line": 1061, "start_col": 0, "start_line": 1060 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 16} -> x: FStar.UInt16.t{FStar.UInt16.v x == LowParse.BitFields.not_bitfield_mask 16 lo hi}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt16.lognot", "LowParse.BitFields.bitfield_mask16", "FStar.UInt16.t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt16.v", "LowParse.BitFields.not_bitfield_mask" ]
[]
false
false
false
false
false
let not_bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot (x: U16.t{U16.v x == not_bitfield_mask 16 lo hi}) =
U16.lognot (bitfield_mask16 lo hi)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_gen32
val get_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi)})
val get_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi)})
let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 95, "end_line": 1021, "start_col": 0, "start_line": 1017 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> lo: FStar.UInt32.t -> hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 32} -> y: FStar.UInt32.t { FStar.UInt32.v y == LowParse.BitFields.get_bitfield (FStar.UInt32.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "FStar.UInt32.shift_right", "FStar.UInt32.shift_left", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "FStar.UInt32.add", "Prims.unit", "LowParse.BitFields.get_bitfield_eq_2", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt32.n", "LowParse.BitFields.get_bitfield" ]
[]
false
false
false
false
false
let get_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi)}) =
get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
false
LowParse.BitFields.fst
LowParse.BitFields.u16_shift_left
val u16_shift_left (x: U16.t) (amount: U32.t{U32.v amount <= 16}) : Tot (y: U16.t{U16.v y == (U16.v x) `U.shift_left` (U32.v amount)})
val u16_shift_left (x: U16.t) (amount: U32.t{U32.v amount <= 16}) : Tot (y: U16.t{U16.v y == (U16.v x) `U.shift_left` (U32.v amount)})
let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 58, "end_line": 1068, "start_col": 0, "start_line": 1064 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 16} -> y: FStar.UInt16.t {FStar.UInt16.v y == FStar.UInt.shift_left (FStar.UInt16.v x) (FStar.UInt32.v amount)}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "FStar.UInt16.__uint_to_t", "Prims.bool", "FStar.UInt16.shift_left", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt16.n", "FStar.UInt16.v", "FStar.UInt.shift_left" ]
[]
false
false
false
false
false
let u16_shift_left (x: U16.t) (amount: U32.t{U32.v amount <= 16}) : Tot (y: U16.t{U16.v y == (U16.v x) `U.shift_left` (U32.v amount)}) =
if amount = 16ul then 0us else x `U16.shift_left` amount
false
LowParse.BitFields.fst
LowParse.BitFields.u32_shift_left
val u32_shift_left (x: U32.t) (amount: U32.t{U32.v amount <= 32}) : Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_left` (U32.v amount)})
val u32_shift_left (x: U32.t) (amount: U32.t{U32.v amount <= 32}) : Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_left` (U32.v amount)})
let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 58, "end_line": 991, "start_col": 0, "start_line": 987 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 32} -> y: FStar.UInt32.t {FStar.UInt32.v y == FStar.UInt.shift_left (FStar.UInt32.v x) (FStar.UInt32.v amount)}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "Prims.bool", "FStar.UInt32.shift_left", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt32.n", "FStar.UInt.shift_left" ]
[]
false
false
false
false
false
let u32_shift_left (x: U32.t) (amount: U32.t{U32.v amount <= 32}) : Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_left` (U32.v amount)}) =
if amount = 32ul then 0ul else x `U32.shift_left` amount
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_eq64_rhs
val bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) (v: U64.t{U64.v v < pow2 (hi - lo)}) : Tot (y: U64.t{bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v})
val bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) (v: U64.t{U64.v v < pow2 (hi - lo)}) : Tot (y: U64.t{bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v})
let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 37, "end_line": 939, "start_col": 0, "start_line": 932 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 64} -> v: FStar.UInt64.t{FStar.UInt64.v v < Prims.pow2 (hi - lo)} -> y: FStar.UInt64.t { LowParse.BitFields.bitfield_eq64_lhs x lo hi == y <==> LowParse.BitFields.get_bitfield64 x lo hi == v }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.UInt64.v", "Prims.pow2", "Prims.op_Subtraction", "LowParse.BitFields.u64_shift_left", "FStar.UInt32.uint_to_t", "Prims.unit", "LowParse.BitFields.bitfield_eq_shift", "FStar.UInt64.n", "Prims.l_iff", "Prims.eq2", "LowParse.BitFields.bitfield_eq64_lhs", "LowParse.BitFields.get_bitfield64" ]
[]
false
false
false
false
false
let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 64}) (v: U64.t{U64.v v < pow2 (hi - lo)}) : Tot (y: U64.t{bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v}) =
[@@ inline_let ]let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` (U32.uint_to_t lo)
false
LowParse.BitFields.fst
LowParse.BitFields.not_bitfield_mask8
val not_bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot (x: U8.t{U8.v x == not_bitfield_mask 8 lo hi})
val not_bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot (x: U8.t{U8.v x == not_bitfield_mask 8 lo hi})
let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) = U8.lognot (bitfield_mask8 lo hi)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 34, "end_line": 1164, "start_col": 0, "start_line": 1163 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2 // inline_for_extraction // no, same let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6 inline_for_extraction let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi }) = if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 8} -> x: FStar.UInt8.t{FStar.UInt8.v x == LowParse.BitFields.not_bitfield_mask 8 lo hi}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt8.lognot", "LowParse.BitFields.bitfield_mask8", "FStar.UInt8.t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt8.v", "LowParse.BitFields.not_bitfield_mask" ]
[]
false
false
false
false
false
let not_bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot (x: U8.t{U8.v x == not_bitfield_mask 8 lo hi}) =
U8.lognot (bitfield_mask8 lo hi)
false
LowParse.BitFields.fst
LowParse.BitFields.u8_shift_right
val u8_shift_right (x: U8.t) (amount: U32.t{U32.v amount <= 8}) : Tot (y: U8.t{U8.v y == (U8.v x) `U.shift_right` (U32.v amount)})
val u8_shift_right (x: U8.t) (amount: U32.t{U32.v amount <= 8}) : Tot (y: U8.t{U8.v y == (U8.v x) `U.shift_right` (U32.v amount)})
let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 1127, "start_col": 0, "start_line": 1120 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 8} -> y: FStar.UInt8.t {FStar.UInt8.v y == FStar.UInt.shift_right (FStar.UInt8.v x) (FStar.UInt32.v amount)}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt8.v", "FStar.UInt.shift_right", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "FStar.UInt8.__uint_to_t", "Prims.bool", "FStar.UInt8.shift_right", "FStar.UInt8.n" ]
[]
false
false
false
false
false
let u8_shift_right (x: U8.t) (amount: U32.t{U32.v amount <= 8}) : Tot (y: U8.t{U8.v y == (U8.v x) `U.shift_right` (U32.v amount)}) =
let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_eq32_rhs
val bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) (v: U32.t{U32.v v < pow2 (hi - lo)}) : Tot (y: U32.t{bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v})
val bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) (v: U32.t{U32.v v < pow2 (hi - lo)}) : Tot (y: U32.t{bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v})
let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 37, "end_line": 1014, "start_col": 0, "start_line": 1007 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 32} -> v: FStar.UInt32.t{FStar.UInt32.v v < Prims.pow2 (hi - lo)} -> y: FStar.UInt32.t { LowParse.BitFields.bitfield_eq32_lhs x lo hi == y <==> LowParse.BitFields.get_bitfield32 x lo hi == v }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.pow2", "Prims.op_Subtraction", "LowParse.BitFields.u32_shift_left", "FStar.UInt32.uint_to_t", "Prims.unit", "LowParse.BitFields.bitfield_eq_shift", "FStar.UInt32.n", "Prims.l_iff", "Prims.eq2", "LowParse.BitFields.bitfield_eq32_lhs", "LowParse.BitFields.get_bitfield32" ]
[]
false
false
false
false
false
let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 32}) (v: U32.t{U32.v v < pow2 (hi - lo)}) : Tot (y: U32.t{bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v}) =
[@@ inline_let ]let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` (U32.uint_to_t lo)
false
LowParse.BitFields.fst
LowParse.BitFields.uint64
val uint64 : uint_t 64 U64.t
val uint64 : uint_t 64 U64.t
let uint64 : uint_t 64 U64.t = { v = U64.v; uint_to_t = U64.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen64 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen64 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield64 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield64 x lo hi z); logor = (fun x y -> U64.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq64_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq64_rhs x lo hi z); }
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 1, "end_line": 1216, "start_col": 0, "start_line": 1204 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2 // inline_for_extraction // no, same let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6 inline_for_extraction let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi }) = if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) inline_for_extraction let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) = U8.lognot (bitfield_mask8 lo hi) inline_for_extraction let u8_shift_left (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_left` amount in y inline_for_extraction let set_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) }) = if lo = hi then begin set_bitfield_empty #8 (U8.v x) lo (U8.v v); x end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v inline_for_extraction let bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot U8.t = x `U8.logand` bitfield_mask8 lo hi inline_for_extraction let bitfield_eq8_rhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U8.v x) lo hi (U8.v v) in v `u8_shift_left` U32.uint_to_t lo inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.BitFields.uint_t 64 FStar.UInt64.t
Prims.Tot
[ "total" ]
[]
[ "LowParse.BitFields.Mkuint_t", "FStar.UInt64.n", "FStar.UInt64.t", "FStar.UInt64.v", "FStar.UInt64.uint_to_t", "FStar.UInt.uint_t", "Prims.unit", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "LowParse.BitFields.get_bitfield_gen64", "Prims.eq2", "LowParse.BitFields.get_bitfield", "Prims.pow2", "Prims.op_Subtraction", "LowParse.BitFields.set_bitfield_gen64", "LowParse.BitFields.set_bitfield", "Prims.nat", "LowParse.BitFields.get_bitfield64", "LowParse.BitFields.set_bitfield64", "FStar.UInt64.logor", "FStar.UInt.logor", "LowParse.BitFields.bitfield_eq64_lhs", "LowParse.BitFields.bitfield_eq64_rhs", "Prims.l_iff", "LowParse.BitFields.uint_t" ]
[]
false
false
false
false
false
let uint64:uint_t 64 U64.t =
{ v = U64.v; uint_to_t = U64.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen64 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen64 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield64 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield64 x lo hi z); logor = (fun x y -> U64.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq64_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq64_rhs x lo hi z) }
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield16
val get_bitfield16 (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) lo hi})
val get_bitfield16 (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) lo hi})
let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 77, "end_line": 1057, "start_col": 0, "start_line": 1054 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 16} -> y: FStar.UInt16.t{FStar.UInt16.v y == LowParse.BitFields.get_bitfield (FStar.UInt16.v x) lo hi}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.u16_shift_right", "FStar.UInt16.logand", "LowParse.BitFields.bitfield_mask16", "FStar.UInt32.uint_to_t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt16.n", "FStar.UInt16.v", "LowParse.BitFields.get_bitfield" ]
[]
false
false
false
false
false
let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) : Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) lo hi}) =
(x `U16.logand` (bitfield_mask16 lo hi)) `u16_shift_right` (U32.uint_to_t lo)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_gen16
val get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi)})
val get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi)})
let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 57, "end_line": 1100, "start_col": 0, "start_line": 1094 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> lo: FStar.UInt32.t -> hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 16} -> y: FStar.UInt16.t { FStar.UInt16.v y == LowParse.BitFields.get_bitfield (FStar.UInt16.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.t", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "FStar.UInt16.shift_right", "FStar.UInt32.add", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "FStar.UInt16.shift_left", "Prims.unit", "LowParse.BitFields.get_bitfield_eq_2", "FStar.UInt16.v", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt16.n", "LowParse.BitFields.get_bitfield" ]
[]
false
false
false
false
false
let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi)}) =
get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); let bf:U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_gen64
val set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t{U64.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v)})
val set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t{U64.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v)})
let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 159, "end_line": 956, "start_col": 0, "start_line": 951 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt64.t -> lo: FStar.UInt32.t -> hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 64} -> v: FStar.UInt64.t{FStar.UInt64.v v < Prims.pow2 (FStar.UInt32.v hi - FStar.UInt32.v lo)} -> y: FStar.UInt64.t { FStar.UInt64.v y == LowParse.BitFields.set_bitfield (FStar.UInt64.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) (FStar.UInt64.v v) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "FStar.UInt64.v", "Prims.pow2", "Prims.op_Subtraction", "FStar.UInt64.logor", "FStar.UInt64.logand", "FStar.UInt64.lognot", "FStar.UInt64.shift_left", "FStar.UInt64.shift_right", "FStar.UInt64.__uint_to_t", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "Prims.unit", "LowParse.BitFields.bitfield_mask_eq_2", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt64.n", "LowParse.BitFields.set_bitfield" ]
[]
false
false
false
false
false
let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t{U64.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v)}) =
bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` (U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo))) `U64.logor` (v `U64.shift_left` lo)
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_mask8
val bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot (x: U8.t{U8.v x == bitfield_mask 8 lo hi})
val bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot (x: U8.t{U8.v x == bitfield_mask 8 lo hi})
let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 1117, "start_col": 0, "start_line": 1111 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 8} -> x: FStar.UInt8.t{FStar.UInt8.v x == LowParse.BitFields.bitfield_mask 8 lo hi}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "FStar.UInt8.__uint_to_t", "Prims.bool", "FStar.UInt8.shift_left", "FStar.UInt8.shift_right", "FStar.UInt8.lognot", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "FStar.UInt32.uint_to_t", "Prims.op_Subtraction", "Prims.unit", "LowParse.BitFields.bitfield_mask_eq_2", "FStar.UInt8.t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt8.n", "FStar.UInt8.v", "LowParse.BitFields.bitfield_mask" ]
[]
false
false
false
false
false
let bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot (x: U8.t{U8.v x == bitfield_mask 8 lo hi}) =
if lo = hi then 0uy else (bitfield_mask_eq_2 8 lo hi; ((U8.lognot 0uy) `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` (U32.uint_to_t lo))
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_gen8
val set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t{U8.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v)})
val set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t{U8.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v)})
let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 1153, "start_col": 0, "start_line": 1140 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> lo: FStar.UInt32.t -> hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 8} -> v: FStar.UInt8.t{FStar.UInt8.v v < Prims.pow2 (FStar.UInt32.v hi - FStar.UInt32.v lo)} -> y: FStar.UInt8.t { FStar.UInt8.v y == LowParse.BitFields.set_bitfield (FStar.UInt8.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) (FStar.UInt8.v v) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "FStar.UInt8.v", "Prims.pow2", "Prims.op_Subtraction", "FStar.UInt8.logor", "FStar.UInt8.shift_left", "FStar.UInt8.logand", "FStar.UInt8.lognot", "FStar.UInt8.shift_right", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "FStar.UInt8.__uint_to_t", "Prims.unit", "LowParse.BitFields.bitfield_mask_eq_2", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt8.n", "LowParse.BitFields.set_bitfield" ]
[]
false
false
false
false
false
let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t{U8.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v)}) =
bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6
false
LowParse.BitFields.fst
LowParse.BitFields.uint32
val uint32 : uint_t 32 U32.t
val uint32 : uint_t 32 U32.t
let uint32 : uint_t 32 U32.t = { v = U32.v; uint_to_t = U32.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen32 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen32 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield32 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield32 x lo hi z); logor = (fun x y -> U32.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq32_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq32_rhs x lo hi z); }
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 1, "end_line": 1235, "start_col": 0, "start_line": 1223 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2 // inline_for_extraction // no, same let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6 inline_for_extraction let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi }) = if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) inline_for_extraction let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) = U8.lognot (bitfield_mask8 lo hi) inline_for_extraction let u8_shift_left (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_left` amount in y inline_for_extraction let set_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) }) = if lo = hi then begin set_bitfield_empty #8 (U8.v x) lo (U8.v v); x end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v inline_for_extraction let bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot U8.t = x `U8.logand` bitfield_mask8 lo hi inline_for_extraction let bitfield_eq8_rhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U8.v x) lo hi (U8.v v) in v `u8_shift_left` U32.uint_to_t lo inline_for_extraction noextract let uint64 : uint_t 64 U64.t = { v = U64.v; uint_to_t = U64.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen64 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen64 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield64 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield64 x lo hi z); logor = (fun x y -> U64.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq64_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq64_rhs x lo hi z); } let uint64_v_eq x = () let uint64_uint_to_t_eq x = () inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.BitFields.uint_t 32 FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "LowParse.BitFields.Mkuint_t", "FStar.UInt32.n", "FStar.UInt32.t", "FStar.UInt32.v", "FStar.UInt32.uint_to_t", "FStar.UInt.uint_t", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "LowParse.BitFields.get_bitfield_gen32", "Prims.eq2", "LowParse.BitFields.get_bitfield", "Prims.pow2", "Prims.op_Subtraction", "LowParse.BitFields.set_bitfield_gen32", "LowParse.BitFields.set_bitfield", "Prims.nat", "LowParse.BitFields.get_bitfield32", "LowParse.BitFields.set_bitfield32", "FStar.UInt32.logor", "FStar.UInt.logor", "LowParse.BitFields.bitfield_eq32_lhs", "LowParse.BitFields.bitfield_eq32_rhs", "Prims.l_iff", "LowParse.BitFields.uint_t" ]
[]
false
false
false
false
false
let uint32:uint_t 32 U32.t =
{ v = U32.v; uint_to_t = U32.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen32 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen32 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield32 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield32 x lo hi z); logor = (fun x y -> U32.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq32_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq32_rhs x lo hi z) }
false
Hacl.Impl.K256.PointDouble.fst
Hacl.Impl.K256.PointDouble.point_double_no_alloc
val point_double_no_alloc (out p:point) (tmp:lbuffer uint64 (5ul *! nlimb)) : Stack unit (requires fun h -> live h out /\ live h p /\ live h tmp /\ eq_or_disjoint out p /\ disjoint out tmp /\ disjoint p tmp /\ point_inv h p) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ point_inv h1 out /\ point_eval h1 out == S.point_double (point_eval h0 p))
val point_double_no_alloc (out p:point) (tmp:lbuffer uint64 (5ul *! nlimb)) : Stack unit (requires fun h -> live h out /\ live h p /\ live h tmp /\ eq_or_disjoint out p /\ disjoint out tmp /\ disjoint p tmp /\ point_inv h p) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ point_inv h1 out /\ point_eval h1 out == S.point_double (point_eval h0 p))
let point_double_no_alloc out p tmp = let x1, y1, z1 = getx p, gety p, getz p in let x3, y3, z3 = getx out, gety out, getz out in let yy = sub tmp 0ul nlimb in let zz = sub tmp nlimb nlimb in let bzz3 = sub tmp (2ul *! nlimb) nlimb in let bzz9 = sub tmp (3ul *! nlimb) nlimb in let tmp = sub tmp (4ul *! nlimb) nlimb in let h0 = ST.get () in fsqr yy y1; //yy = y*y fsqr zz z1; //zz = z*z let h1 = ST.get () in //assert (inv_lazy_reduced2 h1 yy); //assert (inv_lazy_reduced2 h1 zz); fmul_small_num x3 x1 (u64 2); //x3 = 2*x let h2 = ST.get () in BL.fmul15_lemma (1,1,1,1,2) 2 (as_felem5 h1 x1) (u64 2); //assert (felem_fits5 (as_felem5 h2 x3) (2,2,2,2,4)); fmul x3 x3 y1; //x3 = xy2 = x3*y = (2*x)*y calc_z3 y1 z1 z3 yy tmp; calc_bzz9_tmp yy zz bzz3 bzz9 tmp; fmul y3 yy zz; //y3 = yy_zz = yy*zz fmul x3 x3 bzz9; //x3 = x3*bzz9 = xy2*yy_m_bzz9 calc_y3 y3 tmp
{ "file_name": "code/k256/Hacl.Impl.K256.PointDouble.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 145, "start_col": 0, "start_line": 117 }
module Hacl.Impl.K256.PointDouble open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module BL = Hacl.Spec.K256.Field52.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point #set-options "--z3rlimit 300 --fuel 0 --ifuel 0" inline_for_extraction noextract val calc_z3 (y1 z1 z3 yy tmp:felem) : Stack unit (requires fun h -> live h y1 /\ live h z1 /\ live h z3 /\ live h yy /\ live h tmp /\ disjoint y1 z1 /\ disjoint y1 z3 /\ disjoint y1 yy /\ disjoint y1 tmp /\ eq_or_disjoint z1 z3 /\ disjoint z1 yy /\ disjoint z1 tmp /\ disjoint z3 yy /\ disjoint z3 tmp /\ disjoint yy tmp /\ inv_lazy_reduced2 h y1 /\ inv_lazy_reduced2 h z1 /\ inv_lazy_reduced2 h yy) (ensures fun h0 _ h1 -> modifies (loc tmp |+| loc z3) h0 h1 /\ feval h1 z3 = S.fmul (S.fmul (S.fmul (feval h0 yy) (feval h0 y1)) (feval h0 z1)) 8 /\ inv_lazy_reduced2 h1 z3) let calc_z3 y1 z1 z3 yy tmp = fmul tmp yy y1; //tmp = yy*y fmul z3 tmp z1; //z3 = tmp*z = yy*y*z let h1 = ST.get () in //assert (inv_lazy_reduced2 h1 x3); //assert (inv_lazy_reduced2 h1 tmp); //assert (inv_lazy_reduced2 h1 z3); fmul_8_normalize_weak z3 z3 //z3 = z3*8=yy*y*z*8 inline_for_extraction noextract val calc_bzz9_tmp (yy zz bzz3 bzz9 tmp:felem) : Stack unit (requires fun h -> live h yy /\ live h zz /\ live h bzz3 /\ live h bzz9 /\ live h tmp /\ disjoint yy zz /\ disjoint yy bzz3 /\ disjoint yy bzz9 /\ disjoint yy tmp /\ disjoint zz bzz3 /\ disjoint zz bzz9 /\ disjoint zz tmp /\ disjoint bzz3 bzz9 /\ disjoint bzz3 tmp /\ disjoint bzz9 tmp /\ inv_lazy_reduced2 h yy /\ inv_lazy_reduced2 h zz) (ensures fun h0 _ h1 -> modifies (loc bzz3 |+| loc bzz9 |+| loc tmp) h0 h1 /\ (let bzz3 = S.fmul (S.fmul 3 S.b) (feval h0 zz) in feval h1 bzz9 = S.fsub (feval h0 yy) (S.fmul 3 bzz3) /\ feval h1 tmp = S.fmul (feval h1 bzz9) (S.fadd (feval h0 yy) bzz3) /\ inv_lazy_reduced2 h1 tmp /\ felem_fits5 (as_felem5 h1 bzz9) (13,13,13,13,14))) let calc_bzz9_tmp yy zz bzz3 bzz9 tmp = fmul_3b_normalize_weak bzz3 zz; //bzz3 = (3*b)*zz let h1 = ST.get () in //assert (inv_lazy_reduced2 h1 bzz3); fmul_small_num bzz9 bzz3 (u64 3); //bzz9 = 3*bzz3 let h2 = ST.get () in BL.fmul15_lemma (1,1,1,1,2) 3 (as_felem5 h1 bzz3) (u64 3); //assert (felem_fits5 (as_felem5 h2 bzz9) (3,3,3,3,6)); BL.fsub5_lemma (1,1,1,1,2) (3,3,3,3,6) (as_felem5 h1 yy) (as_felem5 h2 bzz9) (u64 6); fsub bzz9 yy bzz9 (u64 6); //bzz9 = yy_m_bzz9 = yy-bzz9 let h3 = ST.get () in //assert (felem_fits5 (as_felem5 h3 bzz9) (13,13,13,13,14)); fadd tmp yy bzz3; //tmp = yy_p_bzz3 = yy+bzz3 let h4 = ST.get () in BL.fadd5_lemma (1,1,1,1,2) (1,1,1,1,2) (as_felem5 h1 yy) (as_felem5 h1 bzz3); //assert (felem_fits5 (as_felem5 h4 tmp) (2,2,2,2,4)); fmul tmp bzz9 tmp //tmp = bzz9*tmp = yy_m_bzz9*yy_p_bzz3 inline_for_extraction noextract val calc_y3 (y3 tmp: felem) : Stack unit (requires fun h -> live h y3 /\ live h tmp /\ disjoint y3 tmp /\ inv_lazy_reduced2 h y3 /\ inv_lazy_reduced2 h tmp) (ensures fun h0 _ h1 -> modifies (loc y3) h0 h1 /\ feval h1 y3 = S.fadd (feval h0 tmp) (S.fmul (S.fmul 24 S.b) (feval h0 y3))/\ inv_lazy_reduced2 h1 y3) let calc_y3 y3 tmp = let h0 = ST.get () in fmul_small_num y3 y3 (u64 168); //y3 = t = (24*b)*y3 = (24*b)*yy_zz let h1 = ST.get () in BL.fmul15_lemma (1,1,1,1,2) 168 (as_felem5 h0 y3) (u64 168); //assert (felem_fits5 (as_felem5 h1 y3) (168,168,168,168,336)); fadd y3 tmp y3; //y3 = tmp+y3 = yy_m_bzz9*yy_p_bzz3+t let h2 = ST.get () in BL.fadd5_lemma (1,1,1,1,2) (168,168,168,168,336) (as_felem5 h0 tmp) (as_felem5 h1 y3); //assert (felem_fits5 (as_felem5 h2 y3) (169,169,169,169,338)); fnormalize_weak y3 y3; BL.normalize_weak5_lemma (169,169,169,169,338) (as_felem5 h2 y3) inline_for_extraction noextract val point_double_no_alloc (out p:point) (tmp:lbuffer uint64 (5ul *! nlimb)) : Stack unit (requires fun h -> live h out /\ live h p /\ live h tmp /\ eq_or_disjoint out p /\ disjoint out tmp /\ disjoint p tmp /\ point_inv h p) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ point_inv h1 out /\ point_eval h1 out == S.point_double (point_eval h0 p))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.PointDouble.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Impl.K256.Point.point -> p: Hacl.Impl.K256.Point.point -> tmp: Lib.Buffer.lbuffer Lib.IntTypes.uint64 (5ul *! Hacl.K256.Field.nlimb) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.K256.Point.point", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.__uint_to_t", "Hacl.K256.Field.nlimb", "Hacl.K256.Field.felem", "Hacl.Impl.K256.PointDouble.calc_y3", "Prims.unit", "Hacl.K256.Field.fmul", "Hacl.Impl.K256.PointDouble.calc_bzz9_tmp", "Hacl.Impl.K256.PointDouble.calc_z3", "Hacl.Spec.K256.Field52.Lemmas.fmul15_lemma", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Hacl.K256.Field.as_felem5", "Lib.IntTypes.u64", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Field.fmul_small_num", "Hacl.K256.Field.fsqr", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.Buffer.sub", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "Hacl.Impl.K256.Point.getz", "Hacl.Impl.K256.Point.gety", "Hacl.Impl.K256.Point.getx" ]
[]
false
true
false
false
false
let point_double_no_alloc out p tmp =
let x1, y1, z1 = getx p, gety p, getz p in let x3, y3, z3 = getx out, gety out, getz out in let yy = sub tmp 0ul nlimb in let zz = sub tmp nlimb nlimb in let bzz3 = sub tmp (2ul *! nlimb) nlimb in let bzz9 = sub tmp (3ul *! nlimb) nlimb in let tmp = sub tmp (4ul *! nlimb) nlimb in let h0 = ST.get () in fsqr yy y1; fsqr zz z1; let h1 = ST.get () in fmul_small_num x3 x1 (u64 2); let h2 = ST.get () in BL.fmul15_lemma (1, 1, 1, 1, 2) 2 (as_felem5 h1 x1) (u64 2); fmul x3 x3 y1; calc_z3 y1 z1 z3 yy tmp; calc_bzz9_tmp yy zz bzz3 bzz9 tmp; fmul y3 yy zz; fmul x3 x3 bzz9; calc_y3 y3 tmp
false
LowParse.BitFields.fst
LowParse.BitFields.u8_shift_left
val u8_shift_left (x: U8.t) (amount: U32.t{U32.v amount <= 8}) : Tot (y: U8.t{U8.v y == (U8.v x) `U.shift_left` (U32.v amount)})
val u8_shift_left (x: U8.t) (amount: U32.t{U32.v amount <= 8}) : Tot (y: U8.t{U8.v y == (U8.v x) `U.shift_left` (U32.v amount)})
let u8_shift_left (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_left` amount in y
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 1174, "start_col": 0, "start_line": 1167 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2 // inline_for_extraction // no, same let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6 inline_for_extraction let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi }) = if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) inline_for_extraction let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) = U8.lognot (bitfield_mask8 lo hi)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 8} -> y: FStar.UInt8.t {FStar.UInt8.v y == FStar.UInt.shift_left (FStar.UInt8.v x) (FStar.UInt32.v amount)}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt8.v", "FStar.UInt.shift_left", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "FStar.UInt8.__uint_to_t", "Prims.bool", "FStar.UInt8.shift_left", "FStar.UInt8.n" ]
[]
false
false
false
false
false
let u8_shift_left (x: U8.t) (amount: U32.t{U32.v amount <= 8}) : Tot (y: U8.t{U8.v y == (U8.v x) `U.shift_left` (U32.v amount)}) =
let y = if amount = 8ul then 0uy else x `U8.shift_left` amount in y
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield8
val set_bitfield8 (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) (v: U8.t{U8.v v < pow2 (hi - lo)}) : Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) lo hi (U8.v v)})
val set_bitfield8 (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) (v: U8.t{U8.v v < pow2 (hi - lo)}) : Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) lo hi (U8.v v)})
let set_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) }) = if lo = hi then begin set_bitfield_empty #8 (U8.v x) lo (U8.v v); x end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 70, "end_line": 1184, "start_col": 0, "start_line": 1177 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2 // inline_for_extraction // no, same let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6 inline_for_extraction let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi }) = if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) inline_for_extraction let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) = U8.lognot (bitfield_mask8 lo hi) inline_for_extraction let u8_shift_left (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_left` amount in y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 8} -> v: FStar.UInt8.t{FStar.UInt8.v v < Prims.pow2 (hi - lo)} -> y: FStar.UInt8.t {FStar.UInt8.v y == LowParse.BitFields.set_bitfield (FStar.UInt8.v x) lo hi (FStar.UInt8.v v)}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.UInt8.v", "Prims.pow2", "Prims.op_Subtraction", "Prims.op_Equality", "Prims.unit", "LowParse.BitFields.set_bitfield_empty", "Prims.bool", "LowParse.BitFields.set_bitfield_gen8", "FStar.UInt32.uint_to_t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt8.n", "LowParse.BitFields.set_bitfield" ]
[]
false
false
false
false
false
let set_bitfield8 (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) (v: U8.t{U8.v v < pow2 (hi - lo)}) : Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) lo hi (U8.v v)}) =
if lo = hi then (set_bitfield_empty #8 (U8.v x) lo (U8.v v); x) else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_eq_shift
val bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` (bitfield_mask tot lo hi) == v `U.shift_left` lo)
val bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` (bitfield_mask tot lo hi) == v `U.shift_left` lo)
let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g ()
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 30, "end_line": 610, "start_col": 0, "start_line": 570 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> v: LowParse.BitFields.ubitfield tot (hi - lo) -> FStar.Pervasives.Lemma (ensures LowParse.BitFields.get_bitfield x lo hi == v <==> FStar.UInt.logand x (LowParse.BitFields.bitfield_mask tot lo hi) == FStar.UInt.shift_left v lo )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "FStar.Classical.move_requires", "Prims.unit", "Prims.eq2", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "LowParse.BitFields.eq_nth", "Prims.op_LessThan", "LowParse.BitFields.nth_le_pow2_m", "Prims.bool", "LowParse.BitFields.nth_get_bitfield", "LowParse.BitFields.nth_shift_left", "LowParse.BitFields.nth_bitfield_mask", "LowParse.BitFields.nth_logand", "LowParse.BitFields.bitfield_mask", "Prims.op_Addition", "FStar.UInt.shift_left", "LowParse.BitFields.get_bitfield", "FStar.UInt.logand", "Prims.l_True", "Prims.l_iff" ]
[]
false
false
true
false
false
let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` (bitfield_mask tot lo hi) == v `U.shift_left` lo) =
let y = x `U.logand` (bitfield_mask tot lo hi) in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo)) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then nth_get_bitfield x lo hi (i - lo)) in Classical.move_requires f (); Classical.move_requires g ()
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield16
val set_bitfield16 (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) (v: U16.t{U16.v v < pow2 (hi - lo)}) : Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) lo hi (U16.v v)})
val set_bitfield16 (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) (v: U16.t{U16.v v < pow2 (hi - lo)}) : Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) lo hi (U16.v v)})
let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 94, "end_line": 1075, "start_col": 0, "start_line": 1071 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 16} -> v: FStar.UInt16.t{FStar.UInt16.v v < Prims.pow2 (hi - lo)} -> y: FStar.UInt16.t { FStar.UInt16.v y == LowParse.BitFields.set_bitfield (FStar.UInt16.v x) lo hi (FStar.UInt16.v v) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.UInt16.v", "Prims.pow2", "Prims.op_Subtraction", "FStar.UInt16.logor", "FStar.UInt16.logand", "LowParse.BitFields.not_bitfield_mask16", "LowParse.BitFields.u16_shift_left", "FStar.UInt32.uint_to_t", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt16.n", "LowParse.BitFields.set_bitfield" ]
[]
false
false
false
false
false
let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) (v: U16.t{U16.v v < pow2 (hi - lo)}) : Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) lo hi (U16.v v)}) =
(x `U16.logand` (not_bitfield_mask16 lo hi)) `U16.logor` (v `u16_shift_left` (U32.uint_to_t lo))
false
LowParse.BitFields.fst
LowParse.BitFields.uint16
val uint16 : uint_t 16 U16.t
val uint16 : uint_t 16 U16.t
let uint16 : uint_t 16 U16.t = { v = U16.v; uint_to_t = U16.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen16 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen16 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield16 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield16 x lo hi z); logor = (fun x y -> U16.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq16_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq16_rhs x lo hi z); }
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 1, "end_line": 1254, "start_col": 0, "start_line": 1242 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2 // inline_for_extraction // no, same let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6 inline_for_extraction let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi }) = if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) inline_for_extraction let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) = U8.lognot (bitfield_mask8 lo hi) inline_for_extraction let u8_shift_left (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_left` amount in y inline_for_extraction let set_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) }) = if lo = hi then begin set_bitfield_empty #8 (U8.v x) lo (U8.v v); x end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v inline_for_extraction let bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot U8.t = x `U8.logand` bitfield_mask8 lo hi inline_for_extraction let bitfield_eq8_rhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U8.v x) lo hi (U8.v v) in v `u8_shift_left` U32.uint_to_t lo inline_for_extraction noextract let uint64 : uint_t 64 U64.t = { v = U64.v; uint_to_t = U64.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen64 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen64 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield64 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield64 x lo hi z); logor = (fun x y -> U64.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq64_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq64_rhs x lo hi z); } let uint64_v_eq x = () let uint64_uint_to_t_eq x = () inline_for_extraction noextract let uint32 : uint_t 32 U32.t = { v = U32.v; uint_to_t = U32.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen32 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen32 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield32 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield32 x lo hi z); logor = (fun x y -> U32.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq32_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq32_rhs x lo hi z); } let uint32_v_eq x = () let uint32_uint_to_t_eq x = () inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.BitFields.uint_t 16 FStar.UInt16.t
Prims.Tot
[ "total" ]
[]
[ "LowParse.BitFields.Mkuint_t", "FStar.UInt16.n", "FStar.UInt16.t", "FStar.UInt16.v", "FStar.UInt16.uint_to_t", "FStar.UInt.uint_t", "Prims.unit", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "LowParse.BitFields.get_bitfield_gen16", "Prims.eq2", "LowParse.BitFields.get_bitfield", "Prims.pow2", "Prims.op_Subtraction", "LowParse.BitFields.set_bitfield_gen16", "LowParse.BitFields.set_bitfield", "Prims.nat", "LowParse.BitFields.get_bitfield16", "LowParse.BitFields.set_bitfield16", "FStar.UInt16.logor", "FStar.UInt.logor", "LowParse.BitFields.bitfield_eq16_lhs", "LowParse.BitFields.bitfield_eq16_rhs", "Prims.l_iff", "LowParse.BitFields.uint_t" ]
[]
false
false
false
false
false
let uint16:uint_t 16 U16.t =
{ v = U16.v; uint_to_t = U16.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen16 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen16 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield16 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield16 x lo hi z); logor = (fun x y -> U16.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq16_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq16_rhs x lo hi z) }
false
LowParse.BitFields.fst
LowParse.BitFields.uint8
val uint8 : uint_t 8 U8.t
val uint8 : uint_t 8 U8.t
let uint8 : uint_t 8 U8.t = { v = U8.v; uint_to_t = U8.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen8 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen8 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield8 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield8 x lo hi z); logor = (fun x y -> U8.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq8_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq8_rhs x lo hi z); }
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 1, "end_line": 1273, "start_col": 0, "start_line": 1261 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2 // inline_for_extraction // no, same let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6 inline_for_extraction let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi }) = if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) inline_for_extraction let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) = U8.lognot (bitfield_mask8 lo hi) inline_for_extraction let u8_shift_left (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_left` amount in y inline_for_extraction let set_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) }) = if lo = hi then begin set_bitfield_empty #8 (U8.v x) lo (U8.v v); x end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v inline_for_extraction let bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot U8.t = x `U8.logand` bitfield_mask8 lo hi inline_for_extraction let bitfield_eq8_rhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U8.v x) lo hi (U8.v v) in v `u8_shift_left` U32.uint_to_t lo inline_for_extraction noextract let uint64 : uint_t 64 U64.t = { v = U64.v; uint_to_t = U64.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen64 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen64 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield64 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield64 x lo hi z); logor = (fun x y -> U64.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq64_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq64_rhs x lo hi z); } let uint64_v_eq x = () let uint64_uint_to_t_eq x = () inline_for_extraction noextract let uint32 : uint_t 32 U32.t = { v = U32.v; uint_to_t = U32.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen32 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen32 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield32 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield32 x lo hi z); logor = (fun x y -> U32.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq32_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq32_rhs x lo hi z); } let uint32_v_eq x = () let uint32_uint_to_t_eq x = () inline_for_extraction noextract let uint16 : uint_t 16 U16.t = { v = U16.v; uint_to_t = U16.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen16 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen16 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield16 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield16 x lo hi z); logor = (fun x y -> U16.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq16_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq16_rhs x lo hi z); } let uint16_v_eq x = () let uint16_uint_to_t_eq x = () inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.BitFields.uint_t 8 FStar.UInt8.t
Prims.Tot
[ "total" ]
[]
[ "LowParse.BitFields.Mkuint_t", "FStar.UInt8.n", "FStar.UInt8.t", "FStar.UInt8.v", "FStar.UInt8.uint_to_t", "FStar.UInt.uint_t", "Prims.unit", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "LowParse.BitFields.get_bitfield_gen8", "Prims.eq2", "LowParse.BitFields.get_bitfield", "Prims.pow2", "Prims.op_Subtraction", "LowParse.BitFields.set_bitfield_gen8", "LowParse.BitFields.set_bitfield", "Prims.nat", "LowParse.BitFields.get_bitfield8", "LowParse.BitFields.set_bitfield8", "FStar.UInt8.logor", "FStar.UInt.logor", "LowParse.BitFields.bitfield_eq8_lhs", "LowParse.BitFields.bitfield_eq8_rhs", "Prims.l_iff", "LowParse.BitFields.uint_t" ]
[]
false
false
false
false
false
let uint8:uint_t 8 U8.t =
{ v = U8.v; uint_to_t = U8.uint_to_t; v_uint_to_t = (fun _ -> ()); uint_to_t_v = (fun _ -> ()); get_bitfield_gen = (fun x lo hi -> get_bitfield_gen8 x lo hi); set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen8 x lo hi z); get_bitfield = (fun x lo hi -> get_bitfield8 x lo hi); set_bitfield = (fun x lo hi z -> set_bitfield8 x lo hi z); logor = (fun x y -> U8.logor x y); bitfield_eq_lhs = (fun x lo hi -> bitfield_eq8_lhs x lo hi); bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq8_rhs x lo hi z) }
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_gen8
val get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t{U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi)})
val get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t{U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi)})
let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 1137, "start_col": 0, "start_line": 1130 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> lo: FStar.UInt32.t -> hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 8} -> y: FStar.UInt8.t { FStar.UInt8.v y == LowParse.BitFields.get_bitfield (FStar.UInt8.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "FStar.UInt8.shift_right", "FStar.UInt32.add", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "FStar.UInt8.shift_left", "Prims.unit", "LowParse.BitFields.get_bitfield_eq_2", "FStar.UInt8.v", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt8.n", "LowParse.BitFields.get_bitfield" ]
[]
false
false
false
false
false
let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t{U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi)}) =
get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_eq16_rhs
val bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) (v: U16.t{U16.v v < pow2 (hi - lo)}) : Tot (y: U16.t{bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v})
val bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) (v: U16.t{U16.v v < pow2 (hi - lo)}) : Tot (y: U16.t{bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v})
let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 37, "end_line": 1091, "start_col": 0, "start_line": 1084 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 16} -> v: FStar.UInt16.t{FStar.UInt16.v v < Prims.pow2 (hi - lo)} -> y: FStar.UInt16.t { LowParse.BitFields.bitfield_eq16_lhs x lo hi == y <==> LowParse.BitFields.get_bitfield16 x lo hi == v }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.UInt16.v", "Prims.pow2", "Prims.op_Subtraction", "LowParse.BitFields.u16_shift_left", "FStar.UInt32.uint_to_t", "Prims.unit", "LowParse.BitFields.bitfield_eq_shift", "FStar.UInt16.n", "Prims.l_iff", "Prims.eq2", "LowParse.BitFields.bitfield_eq16_lhs", "LowParse.BitFields.get_bitfield16" ]
[]
false
false
false
false
false
let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 16}) (v: U16.t{U16.v v < pow2 (hi - lo)}) : Tot (y: U16.t{bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v}) =
[@@ inline_let ]let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` (U32.uint_to_t lo)
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_gen16
val set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t{U16.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v)})
val set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t{U16.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v)})
let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 159, "end_line": 1108, "start_col": 0, "start_line": 1103 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> lo: FStar.UInt32.t -> hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 16} -> v: FStar.UInt16.t{FStar.UInt16.v v < Prims.pow2 (FStar.UInt32.v hi - FStar.UInt32.v lo)} -> y: FStar.UInt16.t { FStar.UInt16.v y == LowParse.BitFields.set_bitfield (FStar.UInt16.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) (FStar.UInt16.v v) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.t", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "FStar.UInt16.v", "Prims.pow2", "Prims.op_Subtraction", "FStar.UInt16.logor", "FStar.UInt16.logand", "FStar.UInt16.lognot", "FStar.UInt16.shift_left", "FStar.UInt16.shift_right", "FStar.UInt16.__uint_to_t", "FStar.UInt32.sub", "FStar.UInt32.__uint_to_t", "Prims.unit", "LowParse.BitFields.bitfield_mask_eq_2", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt16.n", "LowParse.BitFields.set_bitfield" ]
[]
false
false
false
false
false
let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t{U16.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v)}) =
bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` (U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo))) `U16.logor` (v `U16.shift_left` lo)
false
LowParse.BitFields.fst
LowParse.BitFields.bitfield_eq8_rhs
val bitfield_eq8_rhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) (v: U8.t{U8.v v < pow2 (hi - lo)}) : Tot (y: U8.t{bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v})
val bitfield_eq8_rhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) (v: U8.t{U8.v v < pow2 (hi - lo)}) : Tot (y: U8.t{bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v})
let bitfield_eq8_rhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U8.v x) lo hi (U8.v v) in v `u8_shift_left` U32.uint_to_t lo
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 36, "end_line": 1200, "start_col": 0, "start_line": 1193 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16" inline_for_extraction let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) #pop-options (* Instantiate to UInt16 *) inline_for_extraction let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) = if lo = hi then 0us else begin bitfield_mask_eq_2 16 lo hi; (U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo end inline_for_extraction let u16_shift_right (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_right` amount inline_for_extraction let get_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi }) = (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) = U16.lognot (bitfield_mask16 lo hi) inline_for_extraction let u16_shift_left (x: U16.t) (amount: U32.t { U32.v amount <= 16 }) : Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount }) = if amount = 16ul then 0us else x `U16.shift_left` amount inline_for_extraction let set_bitfield16 (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) }) = (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq16_lhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) : Tot U16.t = x `U16.logand` bitfield_mask16 lo hi inline_for_extraction let bitfield_eq16_rhs (x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16}) (v: U16.t { U16.v v < pow2 (hi - lo) }) : Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U16.v x) lo hi (U16.v v) in v `u16_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) : Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi); (* avoid integer promotion again *) let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) (v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) }) = bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi); (x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) inline_for_extraction let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) = if lo = hi then 0uy else begin bitfield_mask_eq_2 8 lo hi; (U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo end inline_for_extraction let u8_shift_right (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_right` amount in y // inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102 let get_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in op2 // inline_for_extraction // no, same let set_bitfield_gen8 (x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8}) (v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) }) = bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi); (* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *) let op0 = (U8.lognot 0uy) in let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in let op2 = op1 `U8.shift_left` lo in let op3 = U8.lognot op2 in let op4 = x `U8.logand` op3 in let op5 = v `U8.shift_left` lo in let op6 = op4 `U8.logor` op5 in op6 inline_for_extraction let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi }) = if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) inline_for_extraction let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) = U8.lognot (bitfield_mask8 lo hi) inline_for_extraction let u8_shift_left (x: U8.t) (amount: U32.t { U32.v amount <= 8 }) : Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount }) = let y = if amount = 8ul then 0uy else x `U8.shift_left` amount in y inline_for_extraction let set_bitfield8 (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) (v: U8.t { U8.v v < pow2 (hi - lo) }) : Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) }) = if lo = hi then begin set_bitfield_empty #8 (U8.v x) lo (U8.v v); x end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v inline_for_extraction let bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) : Tot U8.t = x `U8.logand` bitfield_mask8 lo hi
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 8} -> v: FStar.UInt8.t{FStar.UInt8.v v < Prims.pow2 (hi - lo)} -> y: FStar.UInt8.t { LowParse.BitFields.bitfield_eq8_lhs x lo hi == y <==> LowParse.BitFields.get_bitfield8 x lo hi == v }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.UInt8.v", "Prims.pow2", "Prims.op_Subtraction", "LowParse.BitFields.u8_shift_left", "FStar.UInt32.uint_to_t", "Prims.unit", "LowParse.BitFields.bitfield_eq_shift", "FStar.UInt8.n", "Prims.l_iff", "Prims.eq2", "LowParse.BitFields.bitfield_eq8_lhs", "LowParse.BitFields.get_bitfield8" ]
[]
false
false
false
false
false
let bitfield_eq8_rhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) (v: U8.t{U8.v v < pow2 (hi - lo)}) : Tot (y: U8.t{bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v}) =
[@@ inline_let ]let _ = bitfield_eq_shift (U8.v x) lo hi (U8.v v) in v `u8_shift_left` (U32.uint_to_t lo)
false
LowParse.BitFields.fst
LowParse.BitFields.set_bitfield_gen32
val set_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t{U32.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v)})
val set_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t{U32.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v)})
let set_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) }) = bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 159, "end_line": 1031, "start_col": 0, "start_line": 1026 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16" let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end ) #pop-options let get_bitfield_partition_2 (#tot: pos) (mid: nat { mid <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x 0 mid == get_bitfield y 0 mid /\ get_bitfield x mid tot == get_bitfield y mid tot )) (ensures ( x == y )) = get_bitfield_partition_2_gen 0 mid tot x y; get_bitfield_full x; get_bitfield_full y let rec get_bitfield_partition' (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat) : Lemma (requires (get_bitfield_partition_prop x y lo hi l)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) (decreases l) = match l with | [] -> () | mi :: q -> get_bitfield_partition' x y mi hi q; get_bitfield_partition_2_gen lo mi hi x y let get_bitfield_partition = get_bitfield_partition' let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = M.pow2_le_compat n2 n1; if i < n1 then begin if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1) end else nth_le_pow2_m #n2 x n1 i let get_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) : Lemma (x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i -> let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in nth_get_bitfield #tot2 x lo hi i; assert (y2 == (i < hi - lo && nth #tot2 x (i + lo))); nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i; assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i)); if i < tot1 then begin nth_get_bitfield #tot1 x lo hi i; assert (y1 == (i < hi - lo && nth #tot1 x (i + lo))); if i < hi - lo then nth_size tot1 tot2 x (i + lo) end ) let set_bitfield_size (tot1 tot2: pos) (x: nat { x < pow2 tot1 /\ tot1 <= tot2 }) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot1 }) (v: ubitfield tot1 (hi - lo)) : Lemma (x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat)) = M.pow2_le_compat tot2 tot1; eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i -> let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in nth_set_bitfield #tot2 x lo hi v i; nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i; nth_size tot1 tot2 x i; if i < tot1 then begin nth_set_bitfield #tot1 x lo hi v i; if lo <= i && i < hi then nth_size tot1 tot2 v (i - lo) end ) let set_bitfield_bound (#tot: pos) (x: U.uint_t tot) (bound: nat { bound <= tot /\ x < pow2 bound }) (lo: nat) (hi: nat { lo <= hi /\ hi <= bound }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v < pow2 bound) = if bound = 0 then set_bitfield_empty x lo v else begin M.pow2_le_compat tot bound; M.pow2_le_compat bound (hi - lo); set_bitfield_size bound tot x lo hi v end #push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0" let set_bitfield_set_bitfield_get_bitfield #tot x lo hi lo' hi' v' = set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ; let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in let x2 = set_bitfield x (lo + lo') (lo + hi') v' in eq_nth x1 x2 (fun i -> nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i; nth_set_bitfield x (lo + lo') (lo + hi') v' i ; if lo <= i && i < hi then begin assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo)); nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo); if lo' <= i - lo && i - lo < hi' then begin () end else begin assert (nth x2 i == nth x i); assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo)); nth_get_bitfield x lo hi (i - lo); assert (i - lo + lo == i) end end ) #pop-options let mod_1 (x: int) : Lemma (x % 1 == 0) = () let div_1 (x: int) : Lemma (x / 1 == x) = () let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo)) = if hi - lo = 0 then begin assert (hi == lo); assert_norm (pow2 0 == 1); mod_1 (x / pow2 lo); get_bitfield_empty #tot x lo end else if hi - lo = tot then begin assert (hi == tot); assert (lo == 0); assert_norm (pow2 0 == 1); div_1 x; M.small_mod x (pow2 tot); get_bitfield_full #tot x end else begin assert (hi - lo < tot); U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo; U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo; M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo); U.logand_mask #tot (U.shift_right x lo) (hi - lo); U.shift_right_value_lemma #tot x lo end let pow2_m_minus_one_eq (n: nat) (m: nat) : Lemma (requires (m <= n)) (ensures ( (pow2 n - 1) / pow2 m == pow2 (n - m) - 1 )) = M.pow2_le_compat n m; M.pow2_plus (n - m) m; M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1) let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i -> nth_get_bitfield x lo hi i; nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i; let j = i + (tot - hi + lo) in if j < tot then nth_shift_left x (tot - hi) j ) #restart-solver let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo ) = bitfield_mask_eq tot lo hi; pow2_m_minus_one_eq tot (tot - (hi - lo)); U.lemma_lognot_value_mod #tot 0; U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo)) let set_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo)) = bitfield_mask_eq_2 tot lo hi module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U16 = FStar.UInt16 module U8 = FStar.UInt8 (* Instantiate to UInt64 *) #push-options "--z3rlimit 32" inline_for_extraction let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) = if lo = hi then 0uL else begin bitfield_mask_eq_2 64 lo hi; (U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo end inline_for_extraction let u64_shift_right (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_right` amount inline_for_extraction let get_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi }) = (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) = U64.lognot (bitfield_mask64 lo hi) inline_for_extraction let u64_shift_left (x: U64.t) (amount: U32.t { U32.v amount <= 64 }) : Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount }) = if amount = 64ul then 0uL else x `U64.shift_left` amount inline_for_extraction let set_bitfield64 (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) }) = (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq64_lhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) : Tot U64.t = x `U64.logand` bitfield_mask64 lo hi #push-options "--z3rlimit 16" inline_for_extraction let bitfield_eq64_rhs (x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64}) (v: U64.t { U64.v v < pow2 (hi - lo) }) : Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in v `u64_shift_left` U32.uint_to_t lo #pop-options inline_for_extraction let get_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) : Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi); (x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo) inline_for_extraction let set_bitfield_gen64 (x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64}) (v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) : Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) }) = bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi); (x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) (* Instantiate to UInt32 *) inline_for_extraction let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) = if lo = hi then 0ul else begin bitfield_mask_eq_2 32 lo hi; (U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo end inline_for_extraction let u32_shift_right (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_right` amount inline_for_extraction let get_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi }) = (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo) inline_for_extraction let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) = U32.lognot (bitfield_mask32 lo hi) inline_for_extraction let u32_shift_left (x: U32.t) (amount: U32.t { U32.v amount <= 32 }) : Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount }) = if amount = 32ul then 0ul else x `U32.shift_left` amount inline_for_extraction let set_bitfield32 (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) }) = (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) inline_for_extraction let bitfield_eq32_lhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) : Tot U32.t = x `U32.logand` bitfield_mask32 lo hi inline_for_extraction let bitfield_eq32_rhs (x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32}) (v: U32.t { U32.v v < pow2 (hi - lo) }) : Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v }) = [@inline_let] let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in v `u32_shift_left` U32.uint_to_t lo inline_for_extraction let get_bitfield_gen32 (x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) : Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) }) = get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi); (x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> lo: FStar.UInt32.t -> hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 32} -> v: FStar.UInt32.t{FStar.UInt32.v v < Prims.pow2 (FStar.UInt32.v hi - FStar.UInt32.v lo)} -> y: FStar.UInt32.t { FStar.UInt32.v y == LowParse.BitFields.set_bitfield (FStar.UInt32.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) (FStar.UInt32.v v) }
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.op_Subtraction", "FStar.UInt32.logor", "FStar.UInt32.logand", "FStar.UInt32.lognot", "FStar.UInt32.shift_left", "FStar.UInt32.shift_right", "FStar.UInt32.__uint_to_t", "FStar.UInt32.sub", "Prims.unit", "LowParse.BitFields.bitfield_mask_eq_2", "Prims.eq2", "FStar.UInt.uint_t", "FStar.UInt32.n", "LowParse.BitFields.set_bitfield" ]
[]
false
false
false
false
false
let set_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32}) (v: U32.t{U32.v v < pow2 (U32.v hi - U32.v lo)}) : Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v)}) =
bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi); (x `U32.logand` (U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo))) `U32.logor` (v `U32.shift_left` lo)
false
LowParse.BitFields.fst
LowParse.BitFields.get_bitfield_partition_2_gen
val get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi ))
val get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi ))
let get_bitfield_partition_2_gen (#tot: pos) (lo: nat) (mi: nat) (hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot }) (x y: U.uint_t tot) : Lemma (requires ( get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi )) (ensures ( get_bitfield x lo hi == get_bitfield y lo hi )) = eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then begin if i < mi - lo then begin nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i end else begin nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi) end end )
{ "file_name": "src/lowparse/LowParse.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 660, "start_col": 0, "start_line": 630 }
module LowParse.BitFields module U = FStar.UInt module M = LowParse.Math open FStar.Mul inline_for_extraction let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) = [@inline_let] let _ = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo in normalize_term ((pow2 (hi - lo) - 1) * pow2 lo) let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma ( 0 <= pow2 (hi - lo) - 1 /\ pow2 (hi - lo) - 1 < pow2 tot /\ bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo ) = M.pow2_le_compat tot (hi - lo); U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo; M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo; M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo); M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo)); M.swap_mul (pow2 (hi - lo)) (pow2 lo); M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo); M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot) (* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *) val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\ (n - m <= i ==> U.nth #n (pow2 m - 1) i == true))) let rec nth_pow2_minus_one' #n m i = let a = pow2 m - 1 in M.pow2_le_compat n m; if m = 0 then U.one_to_vec_lemma #n i else if m = n then U.ones_to_vec_lemma #n i else if i = n - 1 then () else nth_pow2_minus_one' #(n - 1) (m - 1) i (* Rephrasing with a more natural nth *) let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool = U.nth a (n - 1 - i) let eq_nth (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (f: ( (i: nat { i < n }) -> Lemma (nth a i == nth b i) )) : Lemma (a == b) = let g (i: nat { i < n }) : Lemma (U.nth a i == U.nth b i) = f (n - 1 - i) in Classical.forall_intro g; U.nth_lemma a b let nth_pow2_minus_one (#n:pos) (m:nat{m <= n}) (i:nat{i < n}) : Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (nth #n (pow2 m - 1) i == (i < m)))) = nth_pow2_minus_one' #n m (n - 1 - i) let nth_shift_left (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_left a s) i == (s <= i && nth a (i - s))) = () let nth_shift_right (#n: pos) (a: U.uint_t n) (s: nat) (i: nat {i < n}) : Lemma (nth (U.shift_right a s) i == (i + s < n && nth a (i + s))) = () let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi)) = bitfield_mask_eq tot lo hi; nth_shift_left #tot (pow2 (hi - lo) - 1) lo i; if i < lo then () else begin nth_pow2_minus_one #tot (hi - lo) (i - lo) end let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) = (x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo let nth_logand (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logand` b) i == (nth a i && nth b i)) = () let nth_logor (#n: pos) (a b: U.uint_t n) (i: nat {i < n}) : Lemma (nth (a `U.logor` b) i == (nth a i || nth b i)) = () let nth_lognot (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Lemma (nth (U.lognot a) i == not (nth a i)) = () let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i; if i + lo < tot then begin nth_logand x (bitfield_mask tot lo hi) (i + lo); nth_bitfield_mask tot lo hi (i + lo) end else () let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (let y = get_bitfield_raw x lo hi in pow2 (hi - lo) - 1 < pow2 tot /\ y == y `U.logand` (pow2 (hi - lo) - 1) ) = nth_pow2_minus_one #tot (hi - lo) 0; let y = get_bitfield_raw x lo hi in eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i -> nth_get_bitfield_raw x lo hi i; nth_pow2_minus_one #tot (hi - lo) i; nth_logand y (pow2 (hi - lo) - 1) i ) #push-options "--z3rlimit 16" let logand_mask (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) : Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = M.pow2_le_compat n m; if m = 0 then begin U.logand_lemma_1 a end else if m = n then begin U.logand_lemma_2 a; M.modulo_lemma a (pow2 m) end else begin U.logand_mask a m end #pop-options let nth_le_pow2_m (#n: pos) (a: U.uint_t n) (m: nat {m <= n}) (i: nat {i < n}) : Lemma (requires (a < pow2 m /\ m <= i)) (ensures (nth a i == false)) = logand_mask a m; M.modulo_lemma a (pow2 m); nth_pow2_minus_one #n m i; nth_logand a (pow2 m - 1) i let get_bitfield_raw_bounded (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield_raw x lo hi < pow2 (hi - lo)) = get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi; logand_mask (get_bitfield_raw x lo hi) (hi - lo); M.lemma_mod_lt x (pow2 (hi - lo)) let get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (ubitfield tot (hi - lo)) = get_bitfield_raw_bounded x lo hi; get_bitfield_raw x lo hi let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma (nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo))) = nth_get_bitfield_raw x lo hi i let get_bitfield_logor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) let get_bitfield_logxor (#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma (get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) = eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i -> nth_get_bitfield (x `U.logxor` y) lo hi i; nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i ) #push-options "--z3rlimit 16" let logor_disjoint (#n: pos) (a: U.uint_t n) (b: U.uint_t n) (m: nat {m <= n}) : Lemma (requires ( a % pow2 m == 0 /\ b < pow2 m )) (ensures (U.logor #n a b == a + b)) = if m = 0 then U.logor_lemma_1 a else if m = n then begin M.modulo_lemma a (pow2 n); U.logor_commutative a b; U.logor_lemma_1 b end else U.logor_disjoint a b m #pop-options let bitfield_mask_mod_pow2_lo (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo}) : Lemma (bitfield_mask tot lo hi % pow2 m == 0) = M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo let bitfield_mask_lt_pow2_hi (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (bitfield_mask tot lo hi < pow2 hi) = M.pow2_le_compat tot hi; M.pow2_plus (hi - lo) lo inline_for_extraction let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)}) = [@inline_let] let a = bitfield_mask tot hi tot in [@inline_let] let b = bitfield_mask tot 0 lo in [@inline_let] let _ = bitfield_mask_mod_pow2_lo tot hi tot lo; bitfield_mask_lt_pow2_hi tot 0 lo; logor_disjoint a b lo; eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i -> nth_bitfield_mask tot hi tot i; nth_bitfield_mask tot 0 lo i; nth_bitfield_mask tot lo hi i ) in normalize_term (a + b) let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma (nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i)) = nth_lognot (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i let set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Tot (U.uint_t tot) = (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo) let nth_set_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (i: nat {i < tot}) : Lemma (nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) = let y = nth (set_bitfield x lo hi v) i in nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i; assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i)); nth_logand x (not_bitfield_mask tot lo hi) i; assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i)); nth_not_bitfield_mask tot lo hi i; assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i)); nth_shift_left v lo i; assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo)))); if (lo <= i && i < hi) then assert (y == nth v (i - lo)) else if (i < hi) then assert (y == nth x i) else begin nth_le_pow2_m v (hi - lo) (i - lo); assert (y == nth x i) end; assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i)) #push-options "--z3rlimit 32" let get_bitfield_set_bitfield_same (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo hi i; if i < hi - lo then begin nth_set_bitfield x lo hi v (i + lo) end else nth_le_pow2_m v (hi - lo) i ) #pop-options let get_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi')) = eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i -> nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i; nth_get_bitfield x lo' hi' i; if i < hi' - lo' then begin nth_set_bitfield x lo hi v (i + lo') end ) let set_bitfield_set_bitfield_same_gen (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v')) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_set_bitfield_other (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) (lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo')) : Lemma (requires (hi' <= lo \/ hi <= lo')) (ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v)) = eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i -> nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i; nth_set_bitfield x lo hi v i; nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i; nth_set_bitfield x lo' hi' v' i ) let set_bitfield_full (#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot) : Lemma (set_bitfield x 0 tot y == y) = eq_nth (set_bitfield x 0 tot y) y (fun i -> nth_set_bitfield x 0 tot y i ) let set_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0) : Lemma (set_bitfield x i i y == x) = eq_nth (set_bitfield x i i y) x (fun j -> nth_set_bitfield x i i y j ) let nth_zero (tot: pos) (i: nat {i < tot}) : Lemma (nth #tot 0 i == false) = U.zero_nth_lemma #tot i let get_bitfield_zero (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield #tot 0 lo hi == 0) = eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i -> nth_zero tot i; nth_get_bitfield #tot 0 lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) let get_bitfield_full (#tot: pos) (x: U.uint_t tot) : Lemma (get_bitfield x 0 tot == x) = eq_nth (get_bitfield x 0 tot) x (fun i -> nth_get_bitfield x 0 tot i ) let get_bitfield_empty (#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) : Lemma (get_bitfield x i i == 0) = eq_nth (get_bitfield x i i) 0 (fun j -> nth_get_bitfield x i i j; nth_zero tot j ) let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = if mi = 0 then get_bitfield_zero tot mi tot else if mi < tot then begin M.modulo_lemma x (pow2 mi); U.logand_mask x mi; eq_nth (get_bitfield x mi tot) 0 (fun i -> nth_zero tot i; nth_get_bitfield x mi tot i; nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i; nth_pow2_minus_one #tot mi i ) end let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat {mi <= tot}) : Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = if mi = 0 then get_bitfield_full x else if mi < tot then begin M.pow2_le_compat tot mi; eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i -> nth_pow2_minus_one #tot mi i; if mi <= i then begin nth_get_bitfield x mi tot (i - mi); nth_zero tot (i - mi) end ); U.logand_mask x mi; M.lemma_mod_lt x (pow2 mi) end let get_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo }) : Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i -> nth_get_bitfield (get_bitfield x lo hi) lo' hi' i; nth_get_bitfield x (lo + lo') (lo + hi') i ; if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo') ) #push-options "--z3rlimit_factor 2" let get_bitfield_zero_inner (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi }) : Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) = eq_nth (get_bitfield x lo' hi') 0 (fun i -> nth_get_bitfield x lo' hi' i; nth_zero tot i; if (i < hi' - lo') then begin nth_get_bitfield x lo hi (i + lo' - lo); nth_zero tot (i + lo'); nth_zero tot (i + lo' - lo) end ) in Classical.move_requires f () #pop-options #push-options "--z3rlimit 32" let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let f () : Lemma (requires (y == 0)) (ensures (z == 0)) = eq_nth z 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if i < hi - lo then nth_zero tot (i + lo) ) in let g () : Lemma (requires (z == 0)) (ensures (y == 0)) = eq_nth y 0 (fun i -> nth_zero tot i; nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; if lo <= i && i < hi then begin nth_get_bitfield x lo hi (i - lo); nth_zero tot (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let bitfield_eq_shift (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo)) : Lemma (get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo) = let y = x `U.logand` bitfield_mask tot lo hi in let z = get_bitfield x lo hi in let w = v `U.shift_left` lo in let f () : Lemma (requires (y == w)) (ensures (z == v)) = eq_nth z v (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_get_bitfield x lo hi i; if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo) ) in let g () : Lemma (requires (z == v)) (ensures (y == w)) = eq_nth y w (fun i -> nth_logand x (bitfield_mask tot lo hi) i; nth_bitfield_mask tot lo hi i; nth_shift_left v lo i; if hi <= i then nth_le_pow2_m v (hi - lo) (i - lo) else if lo <= i then begin nth_get_bitfield x lo hi (i - lo) end ) in Classical.move_requires f (); Classical.move_requires g () #pop-options #push-options "--z3rlimit 16" let set_bitfield_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i -> nth_set_bitfield x lo hi (get_bitfield x lo hi) i; if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo) ) #pop-options #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Math.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.BitFields.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowParse.Math", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "LowParse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> mi: Prims.nat -> hi: Prims.nat{lo <= mi /\ mi <= hi /\ hi <= tot} -> x: FStar.UInt.uint_t tot -> y: FStar.UInt.uint_t tot -> FStar.Pervasives.Lemma (requires LowParse.BitFields.get_bitfield x lo mi == LowParse.BitFields.get_bitfield y lo mi /\ LowParse.BitFields.get_bitfield x mi hi == LowParse.BitFields.get_bitfield y mi hi) (ensures LowParse.BitFields.get_bitfield x lo hi == LowParse.BitFields.get_bitfield y lo hi)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt.uint_t", "LowParse.BitFields.eq_nth", "LowParse.BitFields.get_bitfield", "Prims.op_LessThan", "Prims.op_Subtraction", "LowParse.BitFields.nth_get_bitfield", "Prims.unit", "Prims.bool", "Prims.op_Addition", "LowParse.BitFields.nth", "Prims.eq2", "LowParse.BitFields.ubitfield", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let get_bitfield_partition_2_gen (#tot: pos) (lo mi: nat) (hi: nat{lo <= mi /\ mi <= hi /\ hi <= tot}) (x y: U.uint_t tot) : Lemma (requires (get_bitfield x lo mi == get_bitfield y lo mi /\ get_bitfield x mi hi == get_bitfield y mi hi)) (ensures (get_bitfield x lo hi == get_bitfield y lo hi)) =
eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i -> let a = nth (get_bitfield x lo hi) i in let b = nth (get_bitfield y lo hi) i in nth_get_bitfield x lo hi i; nth_get_bitfield y lo hi i; if i < hi - lo then if i < mi - lo then (nth_get_bitfield x lo mi i; nth_get_bitfield y lo mi i) else (nth_get_bitfield x mi hi (i + lo - mi); nth_get_bitfield y mi hi (i + lo - mi)))
false
Vale.AES.X64.GCMdecryptOpt.fsti
Vale.AES.X64.GCMdecryptOpt.va_wp_Gcm_blocks_decrypt_stdcall
val va_wp_Gcm_blocks_decrypt_stdcall (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (cipher_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_Gcm_blocks_decrypt_stdcall (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (cipher_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_Gcm_blocks_decrypt_stdcall (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (cipher_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (cipher_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ cipher_num_bytes == cipher_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 6) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= cipher_num_bytes /\ cipher_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ aes_reqs alg key (Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b) keys_b keys_ptr (va_get_mem va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_rsp:nat64) (va_x_rbp:nat64) (va_x_r8:nat64) (va_x_r9:nat64) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_heap1:vale_heap) (va_x_heap2:vale_heap) (va_x_heap3:vale_heap) (va_x_heap5:vale_heap) (va_x_heap6:vale_heap) (va_x_memLayout:vale_heap_layout) (va_x_efl:Vale.X64.Flags.t) (va_x_stack:vale_stack) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_layout va_x_memLayout (va_upd_mem_heaplet 6 va_x_heap6 (va_upd_mem_heaplet 5 va_x_heap5 (va_upd_mem_heaplet 3 va_x_heap3 (va_upd_mem_heaplet 2 va_x_heap2 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR9 va_x_r9 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0))))))))))))))))))))))))))))))))))))))))) in va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (cipher_num_bytes:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 cipher_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 cipher_num_bytes in let expected_tag = Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_s0)) in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 cipher_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (plain_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #bool (Vale.AES.GCM_s.gcm_decrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv cipher_bytes auth_bytes expected_tag))) (va_get_reg64 rRax va_sM = 0 == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #bool (Vale.AES.GCM_s.gcm_decrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv cipher_bytes auth_bytes expected_tag)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.X64.GCMdecryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 813, "start_col": 0, "start_line": 556 }
module Vale.AES.X64.GCMdecryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.X64.GCMencryptOpt open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys #reset-options "--z3rlimit 100 --max_ifuel 0" //-- Gcm_blocks_decrypt_stdcall val va_code_Gcm_blocks_decrypt_stdcall : win:bool -> alg:algorithm -> Tot va_code val va_codegen_success_Gcm_blocks_decrypt_stdcall : win:bool -> alg:algorithm -> Tot va_pbool let va_req_Gcm_blocks_decrypt_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (cipher_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) : prop = (va_require_total va_b0 (va_code_Gcm_blocks_decrypt_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (cipher_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ cipher_num_bytes == cipher_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 6) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= cipher_num_bytes /\ cipher_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ aes_reqs alg key (Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b) keys_b keys_ptr (va_get_mem va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv))) let va_ens_Gcm_blocks_decrypt_stdcall (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (auth_b:buffer128) (auth_bytes:nat64) (auth_num:nat64) (keys_b:buffer128) (iv_b:buffer128) (iv:supported_iv_LE) (hkeys_b:buffer128) (abytes_b:buffer128) (in128x6_b:buffer128) (out128x6_b:buffer128) (len128x6_num:nat64) (in128_b:buffer128) (out128_b:buffer128) (len128_num:nat64) (inout_b:buffer128) (cipher_num:nat64) (scratch_b:buffer128) (tag_b:buffer128) (key:(seq nat32)) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Gcm_blocks_decrypt_stdcall va_b0 va_s0 win alg auth_b auth_bytes auth_num keys_b iv_b iv hkeys_b abytes_b in128x6_b out128x6_b len128x6_num in128_b out128_b len128_num inout_b cipher_num scratch_b tag_b key /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (cipher_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 cipher_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 cipher_num_bytes in let expected_tag = Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_s0)) in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 cipher_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (plain_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #bool (Vale.AES.GCM_s.gcm_decrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv cipher_bytes auth_bytes expected_tag))) (va_get_reg64 rRax va_sM = 0 == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #bool (Vale.AES.GCM_s.gcm_decrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv cipher_bytes auth_bytes expected_tag)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))))))) val va_lemma_Gcm_blocks_decrypt_stdcall : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm -> auth_b:buffer128 -> auth_bytes:nat64 -> auth_num:nat64 -> keys_b:buffer128 -> iv_b:buffer128 -> iv:supported_iv_LE -> hkeys_b:buffer128 -> abytes_b:buffer128 -> in128x6_b:buffer128 -> out128x6_b:buffer128 -> len128x6_num:nat64 -> in128_b:buffer128 -> out128_b:buffer128 -> len128_num:nat64 -> inout_b:buffer128 -> cipher_num:nat64 -> scratch_b:buffer128 -> tag_b:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_blocks_decrypt_stdcall win alg) va_s0 /\ va_get_ok va_s0 /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (cipher_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ cipher_num_bytes == cipher_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 6) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= cipher_num_bytes /\ cipher_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ aes_reqs alg key (Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b) keys_b keys_ptr (va_get_mem va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (auth_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (auth_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let (auth_len:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR8 va_s0 else va_get_reg64 rRdx va_s0) in let (keys_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rR9 va_s0 else va_get_reg64 rRcx va_s0) in let (iv_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0) else va_get_reg64 rR8 va_s0) in let (xip:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0) else va_get_reg64 rR9 va_s0) in let (abytes_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let (in128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let (out128x6_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let (len128x6:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let (in128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let (out128_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let (len128:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let (inout_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let (cipher_num_bytes:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let (scratch_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let (tag_ptr:(va_int_range 0 18446744073709551615)) = (if win then Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) else Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 cipher_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 cipher_num_bytes in let expected_tag = Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_s0)) in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 cipher_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (plain_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #bool (Vale.AES.GCM_s.gcm_decrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv cipher_bytes auth_bytes expected_tag))) (va_get_reg64 rRax va_sM = 0 == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #bool (Vale.AES.GCM_s.gcm_decrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv cipher_bytes auth_bytes expected_tag)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_stack va_sM (va_update_flags va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 6 va_sM (va_update_mem_heaplet 5 va_sM (va_update_mem_heaplet 3 va_sM (va_update_mem_heaplet 2 va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR9 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))))))))))))))))))))))))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.GCMencryptOpt.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMdecryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.Lib.Basic", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCMencryptOpt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCMencryptOpt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> alg: Vale.AES.AES_common_s.algorithm -> auth_b: Vale.X64.Memory.buffer128 -> auth_bytes: Vale.X64.Memory.nat64 -> auth_num: Vale.X64.Memory.nat64 -> keys_b: Vale.X64.Memory.buffer128 -> iv_b: Vale.X64.Memory.buffer128 -> iv: Vale.AES.GCM_s.supported_iv_LE -> hkeys_b: Vale.X64.Memory.buffer128 -> abytes_b: Vale.X64.Memory.buffer128 -> in128x6_b: Vale.X64.Memory.buffer128 -> out128x6_b: Vale.X64.Memory.buffer128 -> len128x6_num: Vale.X64.Memory.nat64 -> in128_b: Vale.X64.Memory.buffer128 -> out128_b: Vale.X64.Memory.buffer128 -> len128_num: Vale.X64.Memory.nat64 -> inout_b: Vale.X64.Memory.buffer128 -> cipher_num: Vale.X64.Memory.nat64 -> scratch_b: Vale.X64.Memory.buffer128 -> tag_b: Vale.X64.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.AES.AES_common_s.algorithm", "Vale.X64.Memory.buffer128", "Vale.X64.Memory.nat64", "Vale.AES.GCM_s.supported_iv_LE", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.X64.CPU_Features_s.movbe_enabled", "Prims.eq2", "Vale.Def.Words_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRsp", "Vale.X64.Stack_i.init_rsp", "Vale.X64.Decls.va_get_stack", "Vale.X64.Memory.is_initial_heap", "Vale.X64.Decls.va_get_mem_layout", "Vale.X64.Decls.va_get_mem", "Prims.l_imp", "Prims.l_not", "Vale.X64.Stack_i.valid_stack_slot64", "Prims.op_Addition", "Vale.Arch.HeapTypes_s.Public", "Vale.X64.Decls.va_get_stackTaint", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Vale.Def.Words_s.pow2_64", "Prims.op_LessThanOrEqual", "Vale.X64.Decls.validSrcAddrs128", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.validDstAddrs128", "Vale.X64.Decls.buffer_disjoints128", "Prims.Cons", "Prims.Nil", "Vale.X64.Decls.buffers_disjoint128", "Prims.op_Multiply", "Vale.X64.Machine_s.pow2_64", "Vale.X64.Decls.buffer_length", "Vale.X64.Memory.vuint128", "Prims.nat", "Vale.X64.Machine_s.pow2_32", "Vale.X64.Memory.buffer_addr", "Prims.op_Modulus", "Prims.op_GreaterThan", "Vale.X64.Decls.va_mul_nat", "Prims.op_Division", "Vale.AES.X64.GCMdecryptOpt.aes_reqs", "Vale.X64.Decls.buffer128_as_seq", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.AES.OptPublic.hkeys_reqs_pub", "Vale.X64.Decls.s128", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.AES.AES_s.aes_encrypt_LE", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Vale.Def.Types_s.quad32", "Vale.AES.GCM_s.compute_iv_BE", "Vale.X64.Decls.buffer128_read", "Vale.X64.Decls.va_int_range", "Vale.X64.Decls.va_if", "Vale.X64.Stack_i.load_stack64", "Vale.X64.Machine_s.rR9", "Vale.X64.Machine_s.rR8", "Vale.Def.Types_s.nat64", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRdi", "Prims.l_Forall", "Vale.X64.InsBasic.vale_heap", "Vale.X64.Decls.quad32", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.X64.Flags.t", "Vale.X64.InsBasic.vale_stack", "Vale.X64.Memory.memtaint", "Vale.X64.Decls.modifies_mem", "Vale.X64.Decls.loc_union", "Vale.X64.Decls.loc_buffer", "FStar.Seq.Base.length", "Vale.Def.Types_s.nat8", "Vale.AES.AES_common_s.is_aes_key", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE", "FStar.Pervasives.Native.__proj__Mktuple2__item___1", "Vale.AES.GCM_s.gcm_decrypt_LE", "Prims.op_Equality", "Vale.X64.Machine_s.rRax", "FStar.Pervasives.Native.__proj__Mktuple2__item___2", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR15", "Vale.X64.Decls.va_get_xmm", "Vale.Def.Words_s.nat8", "Vale.Def.Types_s.le_quad32_to_bytes", "FStar.Seq.Base.slice", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.append", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_stackTaint", "Vale.X64.Decls.va_upd_stack", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_mem_layout", "Vale.X64.Decls.va_upd_mem_heaplet", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rR10", "Vale.X64.Decls.va_upd_mem" ]
[]
false
false
false
true
true
let va_wp_Gcm_blocks_decrypt_stdcall (win: bool) (alg: algorithm) (auth_b: buffer128) (auth_bytes auth_num: nat64) (keys_b iv_b: buffer128) (iv: supported_iv_LE) (hkeys_b abytes_b in128x6_b out128x6_b: buffer128) (len128x6_num: nat64) (in128_b out128_b: buffer128) (len128_num: nat64) (inout_b: buffer128) (cipher_num: nat64) (scratch_b tag_b: buffer128) (key: (seq nat32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (let auth_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let auth_num_bytes:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let auth_len:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let keys_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let iv_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let xip:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let abytes_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0)) in let in128x6_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0)) in let out128x6_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let len128x6:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let in128_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let out128_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let len128:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let inout_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let cipher_num_bytes:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let scratch_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let tag_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in sse_enabled /\ movbe_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (~win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 0) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 8) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ (win ==> Vale.X64.Stack_i.valid_stack_slot64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0) Public (va_get_stackTaint va_s0)) /\ auth_len == auth_num /\ auth_num_bytes == auth_bytes /\ len128x6 == len128x6_num /\ len128 == len128_num /\ cipher_num_bytes == cipher_num /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) auth_ptr auth_b auth_len (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) abytes_ptr abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) iv_ptr iv_b 1 (va_get_mem_layout va_s0) Public /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128x6_ptr in128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128x6_ptr out128x6_b len128x6 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) in128_ptr in128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) out128_ptr out128_b len128 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) inout_ptr inout_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) scratch_ptr scratch_b 9 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) xip hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) tag_ptr tag_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_disjoints128 tag_b ([auth_b; abytes_b; iv_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b]) /\ Vale.X64.Decls.buffer_disjoints128 iv_b ([ keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; scratch_b; hkeys_b ]) /\ Vale.X64.Decls.buffer_disjoints128 scratch_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; inout_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 inout_b ([keys_b; auth_b; abytes_b; in128x6_b; out128x6_b; in128_b; out128_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 auth_b ([keys_b; abytes_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 abytes_b ([keys_b; hkeys_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128x6_b ([keys_b; auth_b; abytes_b; hkeys_b; in128_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 out128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ Vale.X64.Decls.buffer_disjoints128 in128_b ([keys_b; auth_b; abytes_b; hkeys_b; in128x6_b; out128x6_b; inout_b]) /\ (Vale.X64.Decls.buffers_disjoint128 in128x6_b out128x6_b \/ in128x6_b == out128x6_b) /\ (Vale.X64.Decls.buffers_disjoint128 in128_b out128_b \/ in128_b == out128_b) /\ auth_ptr + 16 `op_Multiply` auth_len < pow2_64 /\ in128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ out128x6_ptr + 16 `op_Multiply` len128x6 < pow2_64 /\ in128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ out128_ptr + 16 `op_Multiply` len128 < pow2_64 /\ inout_ptr + 16 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == auth_len /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128x6_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out128_b /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128x6_b == len128x6 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in128_b == len128 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 inout_b == 1 /\ cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ xip + 32 < pow2_64 /\ Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_b (va_get_mem va_s0) + 128 < pow2_64 /\ len128x6 `op_Modulus` 6 == 0 /\ (len128x6 > 0 ==> len128x6 >= 6) /\ 12 + len128x6 + 6 < pow2_32 /\ (va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) <= cipher_num_bytes /\ cipher_num_bytes < va_mul_nat len128x6 (128 `op_Division` 8) + va_mul_nat len128 (128 `op_Division` 8) + 128 `op_Division` 8) /\ (va_mul_nat auth_len (128 `op_Division` 8) <= auth_num_bytes /\ auth_num_bytes < va_mul_nat auth_len (128 `op_Division` 8) + 128 `op_Division` 8) /\ aes_reqs alg key (Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) keys_b) keys_b keys_ptr (va_get_mem va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ (let h_LE = Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) in let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in iv_BE == Vale.AES.GCM_s.compute_iv_BE h_LE iv)) /\ (forall (va_x_mem: vale_heap) (va_x_rax: nat64) (va_x_rbx: nat64) (va_x_rcx: nat64) (va_x_rdx: nat64) (va_x_rdi: nat64) (va_x_rsi: nat64) (va_x_rsp: nat64) (va_x_rbp: nat64) (va_x_r8: nat64) (va_x_r9: nat64) (va_x_r10: nat64) (va_x_r11: nat64) (va_x_r12: nat64) (va_x_r13: nat64) (va_x_r14: nat64) (va_x_r15: nat64) (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32) (va_x_xmm9: quad32) (va_x_xmm10: quad32) (va_x_xmm11: quad32) (va_x_xmm12: quad32) (va_x_xmm13: quad32) (va_x_xmm14: quad32) (va_x_xmm15: quad32) (va_x_heap1: vale_heap) (va_x_heap2: vale_heap) (va_x_heap3: vale_heap) (va_x_heap5: vale_heap) (va_x_heap6: vale_heap) (va_x_memLayout: vale_heap_layout) (va_x_efl: Vale.X64.Flags.t) (va_x_stack: vale_stack) (va_x_stackTaint: memtaint). let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_stack va_x_stack (va_upd_flags va_x_efl (va_upd_mem_layout va_x_memLayout (va_upd_mem_heaplet 6 va_x_heap6 (va_upd_mem_heaplet 5 va_x_heap5 (va_upd_mem_heaplet 3 va_x_heap3 (va_upd_mem_heaplet 2 va_x_heap2 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 ( va_upd_xmm 0 va_x_xmm0 ( va_upd_reg64 rR15 va_x_r15 ( va_upd_reg64 rR14 va_x_r14 ( va_upd_reg64 rR13 va_x_r13 ( va_upd_reg64 rR12 va_x_r12 ( va_upd_reg64 rR11 va_x_r11 ( va_upd_reg64 rR10 va_x_r10 ( va_upd_reg64 rR9 va_x_r9 ( va_upd_reg64 rR8 va_x_r8 ( va_upd_reg64 rRbp va_x_rbp ( va_upd_reg64 rRsp va_x_rsp ( va_upd_reg64 rRsi va_x_rsi ( va_upd_reg64 rRdi va_x_rdi ( va_upd_reg64 rRdx va_x_rdx ( va_upd_reg64 rRcx va_x_rcx ( va_upd_reg64 rRbx va_x_rbx ( va_upd_reg64 rRax va_x_rax ( va_upd_mem va_x_mem va_s0 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )) )))))))))) ))))))))))) in va_get_ok va_sM /\ (let auth_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let auth_num_bytes:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let auth_len:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR8 va_s0) (fun _ -> va_get_reg64 rRdx va_s0) in let keys_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rR9 va_s0) (fun _ -> va_get_reg64 rRcx va_s0) in let iv_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 0) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR8 va_s0) in let xip:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + 8 + 8) (va_get_stack va_s0)) (fun _ -> va_get_reg64 rR9 va_s0) in let abytes_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 16) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 0) (va_get_stack va_s0) ) in let in128x6_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 24) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 8) (va_get_stack va_s0) ) in let out128x6_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 32) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 16) (va_get_stack va_s0)) in let len128x6:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 40) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 24) (va_get_stack va_s0)) in let in128_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 48) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 32) (va_get_stack va_s0)) in let out128_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 56) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 40) (va_get_stack va_s0)) in let len128:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 64) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 48) (va_get_stack va_s0)) in let inout_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 72) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 56) (va_get_stack va_s0)) in let cipher_num_bytes:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 80) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 64) (va_get_stack va_s0)) in let scratch_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 88) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 72) (va_get_stack va_s0)) in let tag_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + 96) (va_get_stack va_s0)) (fun _ -> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + 80) (va_get_stack va_s0)) in Vale.X64.Decls.modifies_mem (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 iv_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 scratch_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128x6_b) (Vale.X64.Decls.loc_union (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 out128_b) (Vale.X64.Decls.loc_buffer #Vale.X64.Memory.vuint128 inout_b))))) (va_get_mem va_s0) (va_get_mem va_sM) /\ cipher_num_bytes < pow2_32 /\ auth_num_bytes < pow2_32 /\ (let iv_BE = Vale.X64.Decls.buffer128_read iv_b 0 (va_get_mem va_s0) in let auth_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) auth_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) abytes_b) in let auth_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes auth_raw_quads) 0 auth_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_s0) in128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_s0) in128_b)) (Vale.X64.Decls.s128 (va_get_mem va_s0) inout_b) in let cipher_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads) 0 cipher_num_bytes in let plain_raw_quads = FStar.Seq.Base.append #Vale.X64.Decls.quad32 (FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem va_sM) out128x6_b) (Vale.X64.Decls.s128 (va_get_mem va_sM) out128_b)) (Vale.X64.Decls.s128 (va_get_mem va_sM) inout_b) in let plain_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads) 0 cipher_num_bytes in let expected_tag = Vale.Def.Types_s.le_quad32_to_bytes (Vale.X64.Decls.buffer128_read tag_b 0 (va_get_mem va_s0)) in l_and (l_and (l_and (l_and (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 auth_bytes < pow2_32) (FStar.Seq.Base.length #Vale.Def.Types_s.nat8 cipher_bytes < pow2_32)) (Vale.AES.AES_common_s.is_aes_key alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key))) (plain_bytes == __proj__Mktuple2__item___1 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #bool (Vale.AES.GCM_s.gcm_decrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv cipher_bytes auth_bytes expected_tag))) (va_get_reg64 rRax va_sM = 0 == __proj__Mktuple2__item___2 #(FStar.Seq.Base.seq Vale.Def.Types_s.nat8) #bool (Vale.AES.GCM_s.gcm_decrypt_LE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE key) iv cipher_bytes auth_bytes expected_tag)) /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 /\ (win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (win ==> va_get_reg64 rRdi va_sM == va_get_reg64 rRdi va_s0) /\ (win ==> va_get_reg64 rRsi va_sM == va_get_reg64 rRsi va_s0) /\ (win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0) /\ (win ==> va_get_xmm 6 va_sM == va_get_xmm 6 va_s0) /\ (win ==> va_get_xmm 7 va_sM == va_get_xmm 7 va_s0) /\ (win ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0) /\ (win ==> va_get_xmm 9 va_sM == va_get_xmm 9 va_s0) /\ (win ==> va_get_xmm 10 va_sM == va_get_xmm 10 va_s0) /\ (win ==> va_get_xmm 11 va_sM == va_get_xmm 11 va_s0) /\ (win ==> va_get_xmm 12 va_sM == va_get_xmm 12 va_s0) /\ (win ==> va_get_xmm 13 va_sM == va_get_xmm 13 va_s0) /\ (win ==> va_get_xmm 14 va_sM == va_get_xmm 14 va_s0) /\ (win ==> va_get_xmm 15 va_sM == va_get_xmm 15 va_s0) /\ (~win ==> va_get_reg64 rRbx va_sM == va_get_reg64 rRbx va_s0) /\ (~win ==> va_get_reg64 rRbp va_sM == va_get_reg64 rRbp va_s0) /\ (~win ==> va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ (~win ==> va_get_reg64 rR13 va_sM == va_get_reg64 rR13 va_s0) /\ (~win ==> va_get_reg64 rR14 va_sM == va_get_reg64 rR14 va_s0) /\ (~win ==> va_get_reg64 rR15 va_sM == va_get_reg64 rR15 va_s0))) ==> va_k va_sM (())))
false
Hacl.Impl.Lib.fst
Hacl.Impl.Lib.fill_elems_st
val fill_elems_st : Type
let fill_elems_st = #t:Type0 -> #a:Type0 -> h0:mem -> n:size_t -> output:lbuffer t n -> refl:(mem -> i:size_nat{i <= v n} -> GTot a) -> footprint:(i:size_nat{i <= v n} -> GTot (l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l})) -> spec:(mem -> GTot (i:size_nat{i < v n} -> a -> a & t)) -> impl:(i:size_t{v i < v n} -> Stack unit (requires fun h -> modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h) (ensures fun h1 _ h2 -> (let block1 = gsub output i 1ul in let c, e = spec h0 (v i) (refl h1 (v i)) in refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\ footprint (v i + 1) `B.loc_includes` footprint (v i) /\ modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) -> Stack unit (requires fun h -> h0 == h /\ live h output) (ensures fun _ _ h1 -> modifies (footprint (v n) |+| loc output) h0 h1 /\ (let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in refl h1 (v n) == s /\ as_seq #_ #t h1 output == o))
{ "file_name": "code/bignum/Hacl.Impl.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 44, "start_col": 0, "start_line": 20 }
module Hacl.Impl.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module LSeq = Lib.Sequence module Loops = Lib.LoopCombinators module S = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "LowStar.Monotonic.Buffer.loc", "Prims.l_and", "LowStar.Monotonic.Buffer.loc_disjoint", "Lib.Buffer.loc", "Lib.Buffer.MUT", "LowStar.Monotonic.Buffer.loc_includes", "LowStar.Monotonic.Buffer.address_liveness_insensitive_locs", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Prims.unit", "Lib.Buffer.modifies", "Lib.Buffer.op_Bar_Plus_Bar", "Lib.Buffer.gsub", "FStar.UInt32.__uint_to_t", "Prims.eq2", "Prims.op_Addition", "Lib.Sequence.index", "Lib.Buffer.as_seq", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.live", "Lib.Sequence.seq", "Prims.nat", "Lib.Sequence.length", "Prims.l_or", "FStar.Seq.Base.length", "Prims.logical", "Hacl.Spec.Lib.generate_elems" ]
[]
false
false
false
true
true
let fill_elems_st =
#t: Type0 -> #a: Type0 -> h0: mem -> n: size_t -> output: lbuffer t n -> refl: (mem -> i: size_nat{i <= v n} -> GTot a) -> footprint: (i: size_nat{i <= v n} -> GTot (l: B.loc { B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l })) -> spec: (mem -> GTot (i: size_nat{i < v n} -> a -> a & t)) -> impl: (i: size_t{v i < v n} -> Stack unit (requires fun h -> modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h) (ensures fun h1 _ h2 -> (let block1 = gsub output i 1ul in let c, e = spec h0 (v i) (refl h1 (v i)) in refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\ (footprint (v i + 1)) `B.loc_includes` (footprint (v i)) /\ modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) -> Stack unit (requires fun h -> h0 == h /\ live h output) (ensures fun _ _ h1 -> modifies (footprint (v n) |+| loc output) h0 h1 /\ (let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in refl h1 (v n) == s /\ as_seq #_ #t h1 output == o))
false
Hacl.Impl.Lib.fst
Hacl.Impl.Lib.lemma_eq_disjoint
val lemma_eq_disjoint: #a1:Type -> #a2:Type -> #a3:Type -> clen1:size_t -> clen2:size_t -> clen3:size_t -> b1:lbuffer a1 clen1 -> b2:lbuffer a2 clen2 -> b3:lbuffer a3 clen3 -> n:size_t{v n < v clen2 /\ v n < v clen1} -> h0:mem -> h1:mem -> Lemma (requires live h0 b1 /\ live h0 b2 /\ live h0 b3 /\ eq_or_disjoint b1 b2 /\ disjoint b1 b3 /\ disjoint b2 b3 /\ modifies (loc (gsub b1 0ul n) |+| loc b3) h0 h1) (ensures (let b2s = gsub b2 n (clen2 -! n) in as_seq h0 b2s == as_seq h1 b2s /\ Seq.index (as_seq h0 b2) (v n) == Seq.index (as_seq h1 b2) (v n)))
val lemma_eq_disjoint: #a1:Type -> #a2:Type -> #a3:Type -> clen1:size_t -> clen2:size_t -> clen3:size_t -> b1:lbuffer a1 clen1 -> b2:lbuffer a2 clen2 -> b3:lbuffer a3 clen3 -> n:size_t{v n < v clen2 /\ v n < v clen1} -> h0:mem -> h1:mem -> Lemma (requires live h0 b1 /\ live h0 b2 /\ live h0 b3 /\ eq_or_disjoint b1 b2 /\ disjoint b1 b3 /\ disjoint b2 b3 /\ modifies (loc (gsub b1 0ul n) |+| loc b3) h0 h1) (ensures (let b2s = gsub b2 n (clen2 -! n) in as_seq h0 b2s == as_seq h1 b2s /\ Seq.index (as_seq h0 b2) (v n) == Seq.index (as_seq h1 b2) (v n)))
let lemma_eq_disjoint #a1 #a2 #a3 clen1 clen2 clen3 b1 b2 b3 n h0 h1 = let b1s = gsub b1 0ul n in let b2s = gsub b2 0ul n in assert (modifies (loc b1s |+| loc b3) h0 h1); assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2) (as_seq h1 b2)); assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2s) (as_seq h1 b2s)); assert (Seq.index (as_seq h1 b2) (v n) == Seq.index (as_seq h1 (gsub b2 n (clen2 -! n))) 0)
{ "file_name": "code/bignum/Hacl.Impl.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 93, "end_line": 185, "start_col": 0, "start_line": 179 }
module Hacl.Impl.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module B = LowStar.Buffer module LSeq = Lib.Sequence module Loops = Lib.LoopCombinators module S = Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let fill_elems_st = #t:Type0 -> #a:Type0 -> h0:mem -> n:size_t -> output:lbuffer t n -> refl:(mem -> i:size_nat{i <= v n} -> GTot a) -> footprint:(i:size_nat{i <= v n} -> GTot (l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l})) -> spec:(mem -> GTot (i:size_nat{i < v n} -> a -> a & t)) -> impl:(i:size_t{v i < v n} -> Stack unit (requires fun h -> modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h) (ensures fun h1 _ h2 -> (let block1 = gsub output i 1ul in let c, e = spec h0 (v i) (refl h1 (v i)) in refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\ footprint (v i + 1) `B.loc_includes` footprint (v i) /\ modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) -> Stack unit (requires fun h -> h0 == h /\ live h output) (ensures fun _ _ h1 -> modifies (footprint (v n) |+| loc output) h0 h1 /\ (let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in refl h1 (v n) == s /\ as_seq #_ #t h1 output == o)) inline_for_extraction noextract val fill_elems : fill_elems_st let fill_elems #t #a h0 n output refl footprint spec impl = [@inline_let] let refl' h (i:nat{i <= v n}) : GTot (S.generate_elem_a t a (v n) i) = refl h i, as_seq h (gsub output 0ul (size i)) in [@inline_let] let footprint' i = footprint i |+| loc (gsub output 0ul (size i)) in [@inline_let] let spec' h0 = S.generate_elem_f (v n) (spec h0) in let h0 = ST.get () in loop h0 n (S.generate_elem_a t a (v n)) refl' footprint' spec' (fun i -> Loops.unfold_repeat_gen (v n) (S.generate_elem_a t a (v n)) (spec' h0) (refl' h0 0) (v i); impl i; let h = ST.get() in FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i) ); let h1 = ST.get () in assert (refl' h1 (v n) == Loops.repeat_gen (v n) (S.generate_elem_a t a (v n)) (S.generate_elem_f (v n) (spec h0)) (refl' h0 0)) inline_for_extraction noextract val fill_blocks4: #t:Type0 -> #a:Type0 -> h0:mem -> n4:size_t{4 * v n4 <= max_size_t} -> output:lbuffer t (4ul *! n4) -> refl:(mem -> i:size_nat{i <= 4 * v n4} -> GTot a) -> footprint:(i:size_nat{i <= 4 * v n4} -> GTot (l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l})) -> spec:(mem -> GTot (i:size_nat{i < 4 * v n4} -> a -> a & t)) -> impl:(i:size_t{v i < 4 * v n4} -> Stack unit (requires fun h -> modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h) (ensures fun h1 _ h2 -> (let block1 = gsub output i 1ul in let c, e = spec h0 (v i) (refl h1 (v i)) in refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\ footprint (v i + 1) `B.loc_includes` footprint (v i) /\ modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) -> Stack unit (requires fun h -> h0 == h /\ live h output) (ensures fun _ _ h1 -> modifies (footprint (4 * v n4) |+| loc output) h0 h1 /\ (let s, o = LSeq.generate_blocks 4 (v n4) (v n4) (Loops.fixed_a a) (S.generate_blocks4_f #t #a (v n4) (spec h0)) (refl h0 0) in refl h1 (4 * v n4) == s /\ as_seq #_ #t h1 output == o)) let fill_blocks4 #t #a h0 n4 output refl footprint spec impl = fill_blocks h0 4ul n4 output (Loops.fixed_a a) (fun h i -> refl h (4 * i)) (fun i -> footprint (4 * i)) (fun h0 -> S.generate_blocks4_f #t #a (v n4) (spec h0)) (fun i -> let h1 = ST.get () in impl (4ul *! i); impl (4ul *! i +! 1ul); impl (4ul *! i +! 2ul); impl (4ul *! i +! 3ul); let h2 = ST.get () in assert ( let c0, e0 = spec h0 (4 * v i) (refl h1 (4 * v i)) in let c1, e1 = spec h0 (4 * v i + 1) c0 in let c2, e2 = spec h0 (4 * v i + 2) c1 in let c3, e3 = spec h0 (4 * v i + 3) c2 in let res = LSeq.create4 e0 e1 e2 e3 in LSeq.create4_lemma e0 e1 e2 e3; let res1 = LSeq.sub (as_seq h2 output) (4 * v i) 4 in refl h2 (4 * v i + 4) == c3 /\ (LSeq.eq_intro res res1; res1 `LSeq.equal` res)) ) inline_for_extraction noextract val fill_elems4: fill_elems_st let fill_elems4 #t #a h0 n output refl footprint spec impl = [@inline_let] let k = n /. 4ul in let tmp = sub output 0ul (4ul *! k) in fill_blocks4 #t #a h0 k tmp refl footprint spec (fun i -> impl i); let h1 = ST.get () in assert (4 * v k + v (n -! 4ul *! k) = v n); B.modifies_buffer_elim (B.gsub #t output (4ul *! k) (n -! 4ul *! k)) (footprint (4 * v k) |+| loc tmp) h0 h1; assert (modifies (footprint (4 * v k) |+| loc (gsub output 0ul (4ul *! k))) h0 h1); let inv (h:mem) (i:nat{4 * v k <= i /\ i <= v n}) = modifies (footprint i |+| loc (gsub output 0ul (size i))) h0 h /\ (let (c, res) = Loops.repeat_right (v n / 4 * 4) i (S.generate_elem_a t a (v n)) (S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k))) in refl h i == c /\ as_seq h (gsub output 0ul (size i)) == res) in Loops.eq_repeat_right (v n / 4 * 4) (v n) (S.generate_elem_a t a (v n)) (S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k))); Lib.Loops.for (k *! 4ul) n inv (fun i -> impl i; let h = ST.get () in assert (v (i +! 1ul) = v i + 1); FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i); Loops.unfold_repeat_right (v n / 4 * 4) (v n) (S.generate_elem_a t a (v n)) (S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k))) (v i) ); S.lemma_generate_elems4 (v n) (v n) (spec h0) (refl h0 0) inline_for_extraction noextract val lemma_eq_disjoint: #a1:Type -> #a2:Type -> #a3:Type -> clen1:size_t -> clen2:size_t -> clen3:size_t -> b1:lbuffer a1 clen1 -> b2:lbuffer a2 clen2 -> b3:lbuffer a3 clen3 -> n:size_t{v n < v clen2 /\ v n < v clen1} -> h0:mem -> h1:mem -> Lemma (requires live h0 b1 /\ live h0 b2 /\ live h0 b3 /\ eq_or_disjoint b1 b2 /\ disjoint b1 b3 /\ disjoint b2 b3 /\ modifies (loc (gsub b1 0ul n) |+| loc b3) h0 h1) (ensures (let b2s = gsub b2 n (clen2 -! n) in as_seq h0 b2s == as_seq h1 b2s /\ Seq.index (as_seq h0 b2) (v n) == Seq.index (as_seq h1 b2) (v n)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Lib.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Lib", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
clen1: Lib.IntTypes.size_t -> clen2: Lib.IntTypes.size_t -> clen3: Lib.IntTypes.size_t -> b1: Lib.Buffer.lbuffer a1 clen1 -> b2: Lib.Buffer.lbuffer a2 clen2 -> b3: Lib.Buffer.lbuffer a3 clen3 -> n: Lib.IntTypes.size_t {Lib.IntTypes.v n < Lib.IntTypes.v clen2 /\ Lib.IntTypes.v n < Lib.IntTypes.v clen1} -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires Lib.Buffer.live h0 b1 /\ Lib.Buffer.live h0 b2 /\ Lib.Buffer.live h0 b3 /\ Lib.Buffer.eq_or_disjoint b1 b2 /\ Lib.Buffer.disjoint b1 b3 /\ Lib.Buffer.disjoint b2 b3 /\ Lib.Buffer.modifies (Lib.Buffer.loc (Lib.Buffer.gsub b1 0ul n) |+| Lib.Buffer.loc b3) h0 h1) (ensures (let b2s = Lib.Buffer.gsub b2 n (clen2 -! n) in Lib.Buffer.as_seq h0 b2s == Lib.Buffer.as_seq h1 b2s /\ FStar.Seq.Base.index (Lib.Buffer.as_seq h0 b2) (Lib.IntTypes.v n) == FStar.Seq.Base.index (Lib.Buffer.as_seq h1 b2) (Lib.IntTypes.v n)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Monotonic.HyperStack.mem", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Lib.IntTypes.op_Subtraction_Bang", "Lib.Buffer.gsub", "Prims.unit", "Prims.l_imp", "Lib.Buffer.disjoint", "FStar.Seq.Base.equal", "Lib.Buffer.modifies", "Lib.Buffer.op_Bar_Plus_Bar", "Lib.Buffer.loc", "Lib.Buffer.lbuffer_t", "FStar.UInt32.__uint_to_t" ]
[]
true
false
true
false
false
let lemma_eq_disjoint #a1 #a2 #a3 clen1 clen2 clen3 b1 b2 b3 n h0 h1 =
let b1s = gsub b1 0ul n in let b2s = gsub b2 0ul n in assert (modifies (loc b1s |+| loc b3) h0 h1); assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2) (as_seq h1 b2)); assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2s) (as_seq h1 b2s)); assert (Seq.index (as_seq h1 b2) (v n) == Seq.index (as_seq h1 (gsub b2 n (clen2 -! n))) 0)
false